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ABSTRACT
If we want a future where AI serves a plurality of interests, then
we should pay attention to the factors that drive its success. While
others have studied the importance of data, hardware, and models
in directing the trajectory of AI, we argue that open source software
is a neglected factor shaping AI as a discipline. We start with the
observation that almost all AI research and applications are built
on machine learning open source software (MLOSS). This paper
presents three contributions. First, it quantifies the outsized impact
of MLOSS by using Github contributions data. By contrasting the
costs of MLOSS and its economic benefits, we find that the aver-
age dollar of MLOSS investment corresponds to at least $100 of
global economic value created, corresponding to $30B of economic
value created this year. Second, we leverage interviews with AI
researchers and developers to develop a causal model of the effect
of open sourcing on economic value. We argue that open sourcing
creates value through three primary mechanisms: standardization
of MLOSS tools, increased experimentation in AI research, and
creation of communities. Finally, we consider the incentives for
developing MLOSS and the broader implications of these effects.
We intend this paper to be useful for technologists and academics
who want to analyze and critique AI, and policymakers who want
to better understand and regulate AI systems.
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1 INTRODUCTION
Interest in artificial intelligence (AI) has exploded over the past
decade. Now, even casual consumers interact daily with AI sys-
tems. This is often attributed to advances in data, hardware, and
algorithms [9]. These factors are sometimes described as inputs to
the so-called ‘AI production function’. In this paper, we consider a
neglected factor: open source machine learning software (MLOSS).
MLOSS is ubiquitous in both research and production. However, it
has received comparatively little attention in the literature. In this
paper, we argue that MLOSS is a powerful point of intervention
for shaping AI research and a phenomenon that merits further
examination.

Our argument contains three parts:

(1) MLOSS tools play an outsized role in the creation of eco-
nomic value

(2) MLOSS drives AI impact through standardization, experi-
mentation, and community creation

(3) MLOSS reinforces the deep learning paradigm

Overall, our study deepens understanding of how MLOSS im-
pacts the AI ecosystem.We offer three contributions, corresponding
to the three parts of our argument. First, we estimate the economic
impact of MLOSS tools, which, to our knowledge, is the first esti-
mate of its kind. We argue that the large cost-benefit ratio suggests
MLOSS is a useful point of intervention for policymakers. Second,
using qualitative interview data, we propose that MLOSS shapes
AI development through standardization, experimentation, and
community creation. Finally, we argue that the same factors that
generate economic value reinforce the dominant paradigm of deep
learning. This leads to greater value capture by large institutions
and a narrower set of AI capabilities.

The paper will proceed as follows: Section 2 sets up our argument
by providing definitions and a brief history of MLOSS. Section 3
contains our economic estimate of MLOSS. Section 4 contains our
causal model of how MLOSS shapes the AI ecosystem. Section
5 explores how MLOSS reinforces existing data- and hardware-
intensive approaches to AI. Section 6 concludes and provides two
recommendations.

2 BACKGROUND
To start our discussion, we introduce some key terms and back-
ground context that are crucial for developing our argument in
the following sections. In particular, we will define open source
machine learning (MLOSS) and provide a brief overview of MLOSS
history.
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2.1 Defining Machine Learning Open Source
Software (MLOSS)

Following prior work, we refer to AI as “the use of digital tech-
nology to create systems capable of performing tasks commonly
thought to require intelligence” and will follow the common prac-
tice of using the terms ‘machine learning’ (ML) and ‘artificial intel-
ligence’ (AI) interchangeably [4, 12]. We refer to machine learning
open source software as computer software released under an open
source license that is designed specifically for machine learning.
This includes software ranging from frameworks (e.g. PyTorch and
Pyro) to ‘all-in-one’ packages (e.g. scikit-learn) to model develop-
ment tools (e.g. TensorBoard). It does not include software such as
the interactive computing tool Jupyter Notebook which, although
often used by machine learning practitioners, was not specifically
built to accommodate machine learning.

2.2 A Brief History of MLOSS
We review the history of MLOSS to highlight that the phenomena
is new, ubiquitous, and increasingly supported by industry efforts.

The history of open source machine learning can be grouped into
three phases, punctuated by two critical events: the 2012 ImageNet
competition and the release of TensorFlow in 2015.

• Phase 1: Grassroots Efforts (pre 2012). Prior to 2012, there were
few large and well maintained MLOSS projects [42]. Andrew
Ng’s famous Introduction to Deep Learning was originally
taught in MATLAB, a closed source language. There were
some more targeted ML frameworks such as OpenNN and
Torch (which later formed the foundation for PyTorch). How-
ever, the packages were either very general or difficult to
install and use, and lacked features such as GPU support
[43].

• Phase 2: The Rise of Frameworks (2012-2015). In 2012, a deep
convolutional neural network later known as AlexNet hand-
ily won the ImageNet competition, attracting significant
attention within academic and certain industry communities
[26]. Subsequently, a wave of frameworks emerged from aca-
demic research labs, including Chainer, Theano and Caffe.
Open source software played an important role in the cre-
ation of these frameworks — for instance, the creators of
Caffe directly cite the decision to open source AlexNet as
inspiration for their framework [46]. Simultaneously, there
were a number of efforts within industry to develop private
frameworks, such as Google’s DistBelief. Frameworks for
alternative approaches, such as Stan, also appear and start
to gain prominence.

• Phase 3: Industrialization of AI Research (2015-present). In
2015, Google’s decision to open source TensorFlow changed
the landscape in a number of ways. First, by deploying over
200 engineers on the project, TensorFlow provided a pack-
age that possessed a quality of engineering far above that
of other frameworks at the time[44]. This led other compa-
nies to release competitor frameworks, such as Amazon’s
MXNet, Microsoft’s CNTK, and (later) Facebook’s PyTorch.
In this phase, we also witness the increasing prominence of
frameworks for alternative AI methods. Gen, a probabilistic

programming package within the programming language
Julia, is released and begins to be used by researchers.

Now, open source technologies are ubiquitous in modern ML ap-
plications. Consider a hypothetical document-processing company.
In their stack, they may leverage Detectron2 (an open source object
detection model) programmed in PyTorch (an open source frame-
work) developed in Python (an open source language), originally
trained on COCO (an open source data set) [29, 38]. This is not the
case in many other technical fields, such as animation graphics or
sound engineering.

MLOSS is used in the vast majority of ML applications. Most
organizations implement machine learning methods through cloud
providers like AWS Sagemaker or GCP’s AI platform. Within those
platforms, the predominant way of implementing models is to build
them via existing libraries such as Google’s TensorFlow or Face-
book’s PyTorch [7]. Open source software is even more central to
AI research. Paperswithcode, a community resource for practition-
ers to follow AI research, shows that the vast majority of publicly
available research code is written using open source frameworks
[39]. This matches data from interviews with AI researchers in
both academia and industry, where every single practitioner ac-
knowledged the core role of open source tools to their research
process.

Before discussing related work, we’d like to add a caveat. While
this paper refers to machine learning open source software, much
of the focus is on deep learning open source software. This is the
case for a couple of reasons. First, deep learning tools — especially
frameworks such as PyTorch and TensorFlow — are the most pop-
ular MLOSS tools ever created. Accordingly, they have played an
outsized role in shaping AI research. Second, although the primary
examples provided are from deep learning, we have striven to in-
sure that the effects of MLOSS discussed are not unique to deep
learning.

3 MLOSS TOOLS PLAY AN OUTSIZED ROLE IN
THE CREATION OF ECONOMIC VALUE

Inspired by the observation that open source software is ubiquitous
in AI applications, we argue that MLOSS tools play an outsized role
in the creation of global economic value. Regardless of whether
one cares about economic value for its own sake, this shows that
MLOSS has an outsized role in shaping AI’s impact on society both
now and in the future – if not only because economic incentives
drive development. In turn, this also suggests that policies around
MLOSS may be particularly effective interventions for those for
those seeking to improve the system.

We start by estimating the cost of MLOSS tools based on Github
activity. We then construct a cost-benefit estimate for AI using the
research of consulting organizations. We argue that the benefit-to-
cost ratio of MLOSS tools is at least 100-to-1. In other words, for
every dollar invested in MLOSS tools, we expect at least $100 is
created within the AI ecosystem. By this logic, our conservative
estimate for the global value created by MLOSS is $30B in 2022,
a number we expect to grow. To the best of our knowledge, this
represents the first estimate of the value of machine learning OSS.
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3.1 The Cost of MLOSS Development
We first seek to estimate the cost of annual development of the core
MLOSS repositories. Whereas this exercise would be impossible for
most closed-source technologies, MLOSS development cost can be
estimated from contribution data found on the public repositories
on Github.

3.1.1 Data Collection.

Defining a Comprehensive List of MLOSS Tools. We found 139 ac-
tively maintained MLOSS tools by drawing largely from the list
of tools compiled by Chip Huyen, a leading MLOSS researcher
and developer [21]. A small majority of the tools came from large
technology companies such as Facebook (PyTorch), and growing
startups such as HuggingFace (Transformers). It draws from sources
ranging from the Linux Foundation’s AI Tools, FirstMark’s Data
and AI Landscape, and suggestions from the AI community via
Twitter. We augment this list with a second list from the Journal of
Machine Learning Research [1]. To validate the dataset, we asked
a number of practitioners in the community and examined other
surveys. The practitioners we asked suggested two more tools that
were missing, and the Kaggle survey of developers reflected our
intuition that the vast majority of developers use the same small
number of tools [25]. For this reason, although we don’t consider
our list authoritative, we believe that the excluded tools will not
seriously affect our estimates.

Sampling Contribution Data from MLOSS Repositories. We scrape
contribution data from each repository’s Github contributions page,
which pre-aggregates contributions data at the Contributor-Period
level, where the ‘period of interest’ is user-defined (here the period
was chosen to be two weeks). We then randomly select 5 two-week
periods from the history of each MLOSS repository. For each of
those periods, we record the number of commits and lines modified
(added or deleted) for each contributing user in that period.

The result is 3,932 observations of Contributor-Period level data.
As an illustration, during the October 16-30th 2017 period, Soumith
Chintala (PyTorch co-founder) contributed 10 commits to the Py-
Torch repository corresponding to 10 commits and 338 lines mod-
ified. We also aggregate to the Repo-Period level, a total of 695
observations. As an example, one row records that, during the
March 16-30th 2018 period, the Scikit-Learn repository had a total
of 4 contributors adding 9 commits of 2134 lines modified.

Summarizing the Data. In Figure 1, we present histograms of
the number of commits and lines-modified at both the Contributor-
Period (top) and Repo-Period (bottom) level. The y-axis shows the
number of commits (or lines modified), and the x-axis shows the
log-scaled count of observations corresponding to those values.
For visualization purposes, we collapse value observations above
the 99% quantile to the 99% quantile (aka winsorize at the 99%
level). These resulting distributions seem reasonable. The median
Contributor-Period corresponds to 2 commits of 100 lines of code
modified. The median active repository receives a commit about
15 times by 3 users in a given two-week period, corresponding
to 600 lines of code. However, we also observe the data is right-
skewed. Therefore, while these distributions show that our results
are not outlier-driven, there is some notable degree of inequality in
contributions across MLOSS repositories.

Figure 1: Histogram Plots for Commits and Lines-Modified,
at Contributor-Period (Top) and Repository-Period (Bottom)
levels.

3.1.2 Cost Estimation. We now exploit our dataset to estimate the
cost of these MLOSS repositories. Let a “unit” be either a contribu-
tor, a commit, or a line modified. We first estimate cost-per-unit,
and then estimate the total number of units-per-year over our list
of MLOSS repositories. By multiplying these estimates, we can
estimate the cost-per-year of MLOSS development.

Cost-Per-Unit. We estimate this using a reference organization
with known developer salaries such as PyTorch (Facebook) or Ten-
sorFlow (Google), taken from levels.fyi, a salary information web-
site [16, 17]. We assume an average wage corresponding to the
senior engineer level (e.g. L4 or E4), about $300,000 a year. This is
an upper-bound on average salary (as Google and Facebook likely
pay more than other MLOSS organizations), meaning we calculate
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Table 1: Estimated Annual Cost of MLOSS Tools

Unit Ref. Repo Cost/Unit Units/Year Cost/Year

Commits pytorch 2.43𝐾 123.90𝐾 300.48𝑀
Contributors pytorch 300.00𝐾 779.00 233.70𝑀
Lines tensorflow 34.09 5.49𝑀 187.09𝑀
Lines pytorch 34.08 5.49𝑀 187.06𝑀
Commits tensorflow 986.04 123.90𝐾 122.17𝑀

a conservative over-estimate of the cost of MLOSS development.
When the unit of interest is contributors, this salary is the cost-per-
contributor (e.g. cost-per-unit). For commits and lines modified, we
compute the average units per contributor-period (across our 3932
contributor-periods) and then scale this number from the two-week
period to the yearly level. We then multiply by our assumed salaries
and take the multiplicative inverse to compute a cost-per-unit esti-
mate, according to the following equation:

$ Cost
Unit =

[
AVG

Contrib·Period

(
# Units

Contrib·Period

)
× 26 Periods

Year × Contrib·Year
$ Salary

]−1
Units-Per-Year. We sum across the entire set of MLOSS repositories
to estimate the number of units per year. To compute contributors-
per-year, we assume that the number of yearly-active contributors
is the same as the average number of active contributors in the
periods that we observe. This reflects the logic that not all engineers
who ever contribute to an open-source project are working on it
full-time. Therefore, even if our observed periods do not capture
all contributors at an organization, we argue that the average num-
ber of active contributors is representative of the organizations
investment in MLOSS in general. To compute lines committed or
modified per year, we compute the average units contributed across
all users for each of our 5x periods per repo. We then sum across
all 139 repos, and scale that value to the yearly level.

Units
Year =

∑
Repo

[
AVG
Period

( ∑
User

# Units
User·Period

)]
× Period

2Weeks ×
52·Weeks

Year

Sensitivity Considerations. We estimate total system cost using our
three different units (Contributors, Commits, and Lines Modified)
to ensure that our estimates are not driven by a weak assumption
about how contribution practices from large projects extrapolate to
the rest of our project. Extrapolating via Contributors assumes that
different contributors are doing similar work across repositories. By
contrast, commits and lines modified present alternative ways of
weighting and extrapolating costs to other repos, where we assume
that different commits or lines modified are comparable (even if
Contributors are not comparable).

We present our cost estimates for each unit in Table 1. We find
that the cost of MLOSS ranges between $100-$300MM per year.

3.1.3 Limitations to Cost Estimation. There are several important
limitations to our methodology that affect our ability to interpret it
as a comprehensive cost estimate of the entire MLOSS system.

Comprehensiveness of MLOSS Tool Data. While we made our list as

comprehensive as possible, it’s possible that we are missing signifi-
cant MLOSS projects that contribute to economic value creation
and costs in ways that we are missing. Furthermore, given our lim-
ited sampling, our estimates may also be driven by sampling error.
Despite these concerns, we still believe our estimates capture the
correct first-order approximation of costs. First, as argued above,
there is significant inequality in MLOSS usage, and our expert-
compiled list covers the most important tools with respect to usage.
Second, the estimates of our methodology can be easily extended
via further sampling to mitigate concerns around sampling noise.

Research Code. A final source of economic value missing in our
estimate is the code produced by the research community, which
drives the production of AI research. Research code is an important
aspect of ML Tools because it enables the creation of new valuable
methodologies. However, we are not including research code in
our cost estimates, electing to limit our cost estimates to MLOSS.
We do this for two reasons. First, in practice, applications of AI
models tend to be implemented using the MLOSS included in our
list. Therefore, our cost estimates do capture some degree of the
costs needed to deploy cutting-edge models. Second, the broader
literature on valuation of open source does not consider research
costs in their estimates, and excluding research code makes our
estimates more comparable to other open-source value estimates
[14]. For example, in the OECD estimate of European OSS, they do
not consider the research that the OSS tools are built on.

3.2 The Benefits of AI and the role of MLOSS in
Economic Value Creation

We now contrast the estimated costs of MLOSS with the benefits of
AI to global economic value creation in order to argue that MLOSS
plays an outsized role.

3.2.1 Economic Benefits of AI. Rather than developing our own
estimate, we briefly summarize AI economic benefit estimates from
McKinsey and PWC. Each of these organizations estimates that AI
will add roughly $3-5 trillion USD to the global economy in 2022
[32, 36]. To arrive at these estimates, these reports break down AI
applications into specific use-cases across a broad range of indus-
tries, estimate the value of AI for each use-case separately, and then
aggregate across use-cases. The use-cases cover both the reduction
of the costs of existing processes and also product and service inno-
vation. While estimating the value of AI for each use-case relies on
strong assumptions, the overall size of the value estimate is driven
by the sheer number of use-cases that AI applies to, rather than
any individual estimate. However, due to the strength of assump-
tions going into these reports, these estimates should be taken as
providing only a rough order of magnitude estimate of the eco-
nomic contribution of AI. One reassuring factor is that both reports
provide estimates that are (independently) within an order of mag-
nitude of each other. We therefore feel confident in concluding that
AI provides at least $300 billion in USD to the global economy in
2022 (a reduction from the original estimates by a factor of 10).

3.2.2 Attributing Economic Benefit of AI to MLOSS. We now seek
to connect the overall economic benefit of AI with the specific
value attributable to one part of AI: MLOSS Tools. While it’s hard to
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estimate precisely to break down the value of AI into components,
one heuristic that has been proposed is the 70-20-10 rule, which
argues that AI value creation comes from investments in Processes,
Data/Technologies, and Algorithms, in those proportions [3]. We
identify MLOSS with the algorithms portion of investment, based
on the observation (described in Section 2) that MLOSS tools are
ubiquitous and are the primary means through which models are
distributed in practice. This implies that MLOSS tools are respon-
sible for $30B/year value created, corresponding to a benefit-cost
ratio of over 100-to-1.

3.2.3 Interpreting the Economic Costs and Benefits of MLOSS. This
estimated annual value creation ($30B/year) and benefit-cost ratio
(100:1) are very large – few other classes of technology can match
this level of productivity. By comparison, the OECD estimates that
open source software in Europe generates value at a 4:1 ratio [14].
Furthermore, because MLOSS is a public good, as the usage of AI
scales globally, MLOSS will provide increasing returns to scale –
which will only serve to increase the benefit-cost ratio.

Nevertheless, we think these estimates are reasonable and are
consistent with other known estimates found in the literature. Even
after our conservative estimates, which we expect to be an upper
bound on cost and a lower bound on benefits, we arrived at a
100-to-1 benefit-to-cost ratio. This is consistent with Greenstein
and Nagle’s estimate of the economic contributions of Apache as
between $2B and $12B in 2012 [19].

Although we do not know the exact value attributable to MLOSS,
we are confident that it plays a outsized role in global economic
value creation. Given that MLOSS tooling is ubiquitous and plays a
major role in value creation, we suggest that it is a fruitful arena for
fostering AI development. In order to do so, however, we need an
understanding of the mechanisms through which MLOSS shapes
AI. We explore this in our next section.

4 MLOSS DRIVES AI IMPACT THROUGH
STANDARDIZATION, EXPERIMENTATION,
AND COMMUNITY CREATION

In this section, we develop a causal model of how MLOSS creates
value and shapes the AI research ecosystem.

4.1 Methodology
To develop our model, we conduct a series of interviews of active AI
researchers and practitioners. We combined the interviews with a
review of MLOSS online archival material. We iteratively analyzed
our evidence until we converged upon a consistent model of open
source effects that effectively organized our findings.

4.1.1 Interviewees. We selected AI researchers and developers as
subjects largely through convenience and theoretical sampling [5].
During our selection of interview subjects, we focused on ensur-
ing that our interviews covered experiences from both industry
and academia over a variety of different ML projects. Overall, we
conducted 23 interviews: 8 formal interviews for an average of 50
minutes each, and 15 informal interviews with other AI researchers.
The background and experiences of our formal interview subjects
is listed in Table 2.

Table 2: Overview of Formal Interview Subjects’ Background.
In selecting our interview subjects, we focused on finding
people with a variety of difference experiences.

ID Institutional Experience Role AI Fields

R1 Big Tech PyTorch Dev Frameworks
Compilers

R2 Big Tech TensorFlow Dev Frameworks
R3 University PhD Researcher Audio

Startup (Cybersecurity)
R4 University PhD Researcher Robotics

Big Tech RL
R5 University PhD Researcher RL

Big Tech
Startup (BioTech)

R6 University PhD Researcher NLP
Big Tech
Startup (Translation)

R7 Venture Capital Investor Robotics
Startup (AV) AI Engineer AV

R8 Startup (BioTech) AI Engineer Biophysics

4.1.2 Interview Structure. We followed a general interview struc-
ture where we asked about the following general questions:

• How did you first get introduced to machine learning?
• What have been yourmost recent machine learning projects?
• What institutional contexts did you work in, and what tools
did you use?

• What are the main technologies that you depend on for your
work? How do they fit into your workflow?

• Have you ever used research code from another researcher’s
project? Why? What was the process for using it like?

• What was the last time you used a new model or technique?
What was your process for getting up to speed on it?

• Have you ever shared your own code / tools? Why? What
was the process of preparing it like?

When we could, we ask interviewees to expand on points of interest.
All interviews had notes written within 24-hours of the interview.
We promised confidentiality and received permission to digitally
record the formal interviews, allowing us to transcribe them. In
total, this produced 150 pages of interview transcripts and notes.

4.1.3 Archival Materials. To form a historical perspective, we ex-
amined a variety of sources. These included materials ranging from
the PyTorch five-year review to discussion on the EleutherAI com-
munity Discord to materials from Stanford’s CS230 [2, 11, 37].

4.1.4 Data Analysis. We iterated between information collection
and analysis to generate a theory grounded in data [18]. We use
two lenses of analysis:

(1) Thematic analysis, where form the categories from interview
and archival data;

(2) Theoretical analysis, where we explain the relationship be-
tween the open sourcing, our effect, and economic value.
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Figure 2: (1) We find that MLOSS produces economic value
and shapes the AI ecosystem through three primary effects:
standardization, experimentation, and community creation.
(2) In Section 5, we will explore how these same factors rein-
force the dominant paradigm of deep learning.

Out of the many effects we encountered over our interviews, we
identified three core effects of open-sourcing projects: standardizing
interfaces, enabling experimentation, and creating communities.

4.2 Findings
We organize our finding into three distinct effects: Standardization,
Experimentation, and Community Creation (shown in Figure 2).

4.2.1 Effect 1: Standardizing interfaces. One major effect we ob-
served from our interviews and our own experience with open
source tools was standardization — the widespread adoption of a
single technology or technique among both users and tool-makers.

Thematic Analysis. We observed standardization at three major
levels of analysis.

Programming language and frameworks. Frameworks like Py-
Torch and TensorFlow provide the core primitives that are used by
researchers and developers to construct and train machine learning
models. As described in section 2, after a period of divergence in
framework development, MLOSS frameworks have significantly
consolidated over the past five years.

Our interviewees’ experiences substantiate this general trend
in framework consolidation; several interviewees started out by
working in either older frameworks (R3 worked with Theano) or di-
rectly via array-based methods (R5), not a single one of our subjects
regularly works with a framework outside of PyTorch, TensorFlow,
or JAX today. R3 pointed out that, despite its early prevalence
in the ML community, nobody uses MATLAB any more. All re-
searchers that we interviewed emphasized the benefits of using the
same framework in terms of their ability to replicate and build on
the community’s code, as well as sharing their ideas with other
researchers.

Model Types.We noted that several of our interviewees converged
on working with large neural networks. Traditionally, these models
would be hard for resource-constrained researchers to leverage, but
open source efforts have made many models widely available. R6:
“HuggingFace, for example,... made so many things a lot easier and
continues to for a lot of people in NLP who work on large models. I

don’t really know what I would do without HuggingFace. . . . there’s
a sense that I’m missing a big chunk of the field if I’m not working
on big models at all.”

In order to come to consensus on large models, the research com-
munity also needs open source datasets to establish benchmarks.
For example, the ImageNet challenge was enabled by the public
ImageNet data set. This was essential for establishing the impor-
tance of deep convolutional neural networks in 2012. In providing
benchmarks, public datasets have also facilitated the movement
away from older models such as Markov chains.

User Experience. We also noticed convergence in user experience.
A particularly prominent example that emerged from our inter-

views was the convergence of frameworks on eager execution over
graph-based execution. Eager lets developers print values while
running the model. In contrast, graph based requires users to insert
placeholder variables in a computational graph.

Several interviewees noted that TensorFlow’s default graph exe-
cution was counterintuitive and made it harder to learn as a begin-
ner, which later led them to swap to PyTorch. R6 notes: "TensorFlow
had such aweirdmodel — you can’t print your graph because there’s
no values, it’s just the abstract graph. So I remember I struggled
for a long time in the early days. What I’ve observed is TensorFlow
trying to add more of that back into their framework to imitate
PyTorch. So, now, you can do things like eager execution."

At this point, there are few differences between the top frame-
works. R5 notes “In terms of the specific frameworks themselves...
my personal opinion is that there’s not a huge difference between
all of them – Jax, PyTorch, TensorFlow, etc.”

Beyond user interfaces, openness leads to greater integration
between tools. R1 notes that the development of PyTorch XLA,
which enables PyTorch (Facebook-based software) compatibility
with Tensor-Processing-Units (Google-based hardware), was led by
the Google research team [40].

Theoretical Analysis. Our explanation for the relationship between
open-source and standardization is that open source is a powerful
enabler of standardization. As Lerner and Tirole (2005) explain,
forming consensus with a private tool is difficult [28]. Open sourc-
ing a technology means that it is free to use, and complementary
products, like documentation and tools built on top of it, natu-
rally emerge (a cross-side network effect). This attracts new users,
who are now able to share and collaborate with other users on
the platform (a direct network effect). By contrast, a closed-source
technology presents a friction that makes it difficult for all users to
adopt and agree on initially, which prevents the accruing of these
network effects.

The core economic benefit of standardization is the creation of
natural interoperability — where distinct technological systems are
able to exchange services and interact in a useful way. Interoperabil-
ity improves economic outcomes by lowering the costs necessary
to train and transfer skills across domains, as well as adding value
through the ability for technologies to work with each other.

4.2.2 Effect 2: Enabling experimentation. Open source projects
shaped our interviewees’ project preferences, helped them work
faster, and gave them new ways of thinking about problems.
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Thematic Analysis. We organize our concept of experimentation
into three sub-concepts: project choice, development speed-up, and
novel conceptualization.

Project Choice. We found that the availability of open-source code
had a dramatic effect on the projects that our interviewees worked
on.

The availability of code was a primary motivation for some re-
search projects. R4 said “If PyTorch or an equivalent didn’t exist,
and I was looking at these papers that were, ‘hey here’s this neural
network that can do this task and we don’t know how it works, but
we’re seeing great performance,’ I might just let that be. Whereas
because those tools are there and I can just grab the person’s imple-
mentation of this, I can very quickly start to probe it to see if the
network is actually learning things and test my explainability meth-
ods with it. It’s just so much easier for me to work on those types of
problems, so they become more attractive.” R5 stated “My master’s
thesis was playing around with adversarial examples. . . looking at
neural-tangent-kernel-based models... If ‘neural-tangents’ (a key
library) disappeared, that would be very annoying. I literally don’t
know how to do neural tangent stuff without ‘neural-tangents’, and
I would literally have to go back into the papers. . . which would be
pretty bad.”

When code was not available or did not work, it changed the
scope of the project or whether someone would pursue it. R4 said “I
was trying to build a system where the first step was to implement
these old interactive RL Frameworks. I was having some problems
with that, so it definitely was going really slowly andwas off putting
to me. So I ended up diverting the project. Instead of implementing
those things myself, I ended up doing more of a literature review.”

Beyond research, open-source enables startups that work on AI
problems with limited resources to exist. R8 argues that if their
startup “had to reimplement a deep-learning framework from scratch,
that would not be feasible, because we would need to hire people
who really understand compilers and CUDA and things like that. If
it was closed source, we would pay for it, maybe. . . but you defi-
nitely need to have ML at a certain stage of maturity to allow [our
startup] to do what we do.”

Faster Research and Development. Most obviously, open-source
projects speed up development of new AI applications.

Most subjects felt that, although they conceptually understood
open source frameworks such as TensorFlow and PyTorch, these
tools vitally lowered the friction and increased the speed of speci-
fying model architectures and training neural networks. R4: “For
me, the turnaround could be as short as eight weeks. [Because of
existing code] it’s very, very quick to get a prototype, and then
you’re running your experiments. The cycle is super rapid because
of the availability of these tools.”

MLOSS infrastructure also enables startups to iterate quickly. R7
notes that “these open source tools let you rapidly prototype and
iterate, which is important in the early stages of a company, when
they’re figuring out what their product is”

Novel Conceptualization. Themost subtle form of increased exper-
imentation comes from the way that open-source projects change
how AI developers conceptualize problems.

One way this shows up is in how developers conceive of what
new models and applications can be built. R1 recalls a fellow re-
searcher’s comment: “there’s no way I would have thought of these

ideas if it wasn’t for using PyTorch”. R3 also notes, “In PyTorch you
can have ‘if’ statements and all sorts of weird things that are not
normally part of neural networks, and it back-propagates through
them easily. So you have more freedom to experiment with novel
ideas and structures because of that.” Because of advances in Torch
in particular, new kinds of network architectures such as Tree-
LSTMs are possible [47].

Theoretical Analysis. Open-sourcing a project enables experimenta-
tion because it significantly lowers both the economic and knowl-
edge barriers between project creators and consumers. Especially
in the case of MLOSS, given available code, the barriers to repro-
ducing a paper are very low. For example, R3 notes that “if you
read a biology paper, there’s no way you’re going to, in an after-
noon, reproduce the results... But in machine learning, that’s pretty
doable.” By lowering the barriers to entry, open-source encourages
researchers to enter fields based on the quality of their ideas rather
than their prior knowledge-base or institutional circumstance. This
model is similar to the one presented in Murray et al 2015, which
finds that openness enables researchers to join new fields quickly
and opportunistically work on relevant problems in the context of
biology research.

Enabling experimentation creates economic value because it
leads to the discovery of a variety of machine learning models that
enable AI to solve a broad range of problems. This enables AI to
solve a diverse breadth of use-cases across a variety of problem
domains. Furthermore, it allows for the most effective techniques of
different AI subfields to be transferred over rapidly to new subfields
– for example the recent transfer of Transformer architectures from
NLP problems over to computer-vision problems.

4.2.3 Effect 3: Community Creation. Perhaps themost under-discussed
mechanism that we observe is the effect of open-source on commu-
nity creation. By community, we mean a space for both technology
contributors and users to interact. Common digital spaces today
are Github, Reddit, and Discord.

Thematic Analysis. We observe that open-sourcing a project leads
creators to be more in-touch with users, encourages users to con-
tribute tools themselves, and inspires the creation of related educa-
tional materials that make it easier for others to get involved.

Increased Feedback. Open sourcing projects enables greater feed-
back on the project, which improves its design. Soumith Chintala,
a co-creator of PyTorch, emphasized the role of the openness of the
community in helping to direct the prioritization of PyTorch and
making it a great user experience. “[Soumith] read the entire vol-
ume of information that [his] community produced – github issues,
forum posts, slack messages, twitter posts, reddit and hackernews
comments. It was an incredibly useful signal...” [6].

This effect extends beyond the focal project – R2 noted that,
because of the open-nature of the feedback, PyTorch had an advan-
tage as “second mover”. PyTorch learned from the mistakes of the
previous TensorFlow framework.

For researchers, open-sourcing code enables their ideas to be
more closely validated. R4 notes “If I make mistakes, I want some-
body else to publish a paper saying, ‘hey, you got this wrong...’ I
want this pursuit of truth and openness is the best way to get there.”
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Users Become Contributors. Open source machine learning soft-
ware encourages and makes possible broad involvement. R4 com-
ments “If [research] required you to build your own system... we
would see many fewer people participating in this field.” R5 ob-
serves a cultural aspect associated with open source projects not
shared by closed source projects: “Open source incentivizes people
to play around with the frameworks. I don’t see people say, ‘Here’s
some cool thing I did in Matlab, come check it out.’ But people will
say ‘PyTorch is a cool framework, and here’s something I made
while messing around in PyTorch.’ And they’ll share it in the blog
post...”

Furthermore, MLOSS encourages unlikely participants to con-
tribute to projects. Consider EleutherAI community, an open-source
community that grows and coordinates primarily through their Dis-
cord Server. One undergrad who contributes to the project writes
“One day during the pandemic summer of 2020, I found myself in
this strange dream-like place, a community of international Ma-
chine Learning flaneurs who somehow became convinced that they
could actually make history. At first, I thought it would just be a
fun place to discuss new AI developments. But I soon discovered
that yeah, these people are serious about their ambitions, and more
thrillingly they actually would like to have me on board! As it turns
out, the fact that Machine Learning engineers despise JavaScript
(while still needing it) become [sic] my entry ticket to some of the
coolest projects I ever worked on.”

Improved Educational Materials and Settings. We observe that
open-sourcing tools inspire the community to develop associated
educational material to extend the reach of the user base. All of our
interviewees entered the field through openly available education
materials on AI – ranging from Nielsen’s online book on Neural
Networks to Andrew Ng’s CS231 course at Stanford. R3 notes that
“I studied [the Nielsen textbook] on my own time and got very
interested because I actually realized that this whole thing is not
as complicated as I thought it would be. I could actually run the
example and eventually started building some of my own things.”

Open source communities incentivize the creation of high-impact
educational settings. R2 comments “we [Google] escalated from
(just) teaching university students in the US to going to these road
shows, because we also obviously wanted to teach people in all
sorts of different emerging markets. TensorFlow is an international
platform and is adopted by people everywhere, so. . . we teach them
colab, introducing them to colab, helping them connect to the TPU
or GPU accelerator so that they can run a model in their browser
now they don’t have to worry about actually installing it.”

Theoretical Analysis. The formation of open-source communities
has been studied extensively in the literature, with prior explana-
tions focusing on desires to reciprocate in response to someone
else’s effort, to have impact, or to gain a reputation in a way that
is useful [14]. We think all of these mechanisms are likely at play
in the open-source machine-learning setting. However, we note
one final mechanism for community involvement – participating
in these communities makes the products themselves better, in a
way that benefits the user.

Community creation creates economic value because it lowers
the cost of using these tools and increases the number of available

applications. By encouraging community members to become well-
versed in the available tools and models, open-sourcing also makes
it easier for firms to find the necessary labor needed to implement
machine learning models that meet their organizational needs.

4.2.4 MLOSS vs OSS. At this stage, there may be a natural question
that has occurred to the reader: how is MLOSS conceptually differ-
ent from open source software? Here, we’ll offer two preliminary
thoughts. First, our model of the effects of MLOSS captures some
effects that are common to other OSS as well some effects that are
more unique to MLOSS. For example, the act of open sourcing facil-
itates standardization and the creation of communities in MLOSS
and OSS more generally. However, MLOSS seems to play a particu-
larly important role in enable experimentation early-stage research
and development - something that we do not observe in many other
OSS technologies (e.g., operating systems). Finally, we consider this
an excellent question that is worthy of deeper investigation beyond
what we discuss in this paper. Second, whether there are significant
conceptual differences between MLOSS and OSS more generally
does not diminish the importance of studying MLOSS. MLOSS is
important because ML is important. Nevertheless, we think that
this question is important and deserving of further consideration
beyond our brief discussion here.

4.2.5 Summary. In summary, we believe open-source creates eco-
nomic value through three distinct intermediate mechanisms: stan-
dardization, experimentation, and community creation. These con-
cepts are represented in Figure 2. However, as part of the same
analysis process, we came to realize that these same mechanisms
that create economic value also potentially lead to the selective ac-
celeration of research. We expand on this concept in the following
section.

5 DISCUSSION: INCENTIVES FOR MLOSS AND
IMPLICATIONS FOR AI DEVELOPMENT

In this section, we apply our model to understand how incentives
for MLOSS have shaped the AI research ecosystem. First, we de-
scribe how economic incentives led businesses to fund MLOSS
development in a way that encouraged research attention to con-
verge on deep learning as a paradigm in AI research. Second, we
examine data tools as part of the next frontier of ML technologies.
Because business incentives for data tools differ from those of deep
learning frameworks, we suggest they may not be provided as open
source software.

5.1 MLOSS Reinforces the Deep Learning
Paradigm

5.1.1 Economic Incentives Led Businesses to Support Deep Learn-
ing Tool Development. The dominant tools for machine learning
are primarily developed by large technology companies. There
are three main reasons: talent acquisition, technology control, and
commercial benefit. Before discussing these points, we’d like to
briefly acknowledge that incentives differ among types of busi-
nesses; smaller companies generally are more motivated by talent
acquisition and commercial benefit than technology control. Be-
cause of their larger influence, our focus here will be the larger
companies.
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First, by developing highly regarded tools, companies gain pres-
tige in the ML researcher community. Over the course of many
conversations with dozens of ML practitioners, it was obvious that
open source tool providers are held in high esteem. Researchers
and practitioners, when prompted, are quick to express gratitude
for well-engineered tools. One developer working on a popular
framework told us that their primary motivation for working in
a large technology company was to work on their open source
framework.

Second, sponsoring an open source tool gives the sponsor sig-
nificant indirect power within the ecosystem. Large technology
companies often patent at the same time that they open source
their software [41]. Patenting ensures that the companies are pro-
tected from intellectual property lawsuits while open sourcing facil-
itates mass adoption. Although open source norms are often strong
enough to prevent companies from locking in design decisions that
are harmful to other members in the ecosystem, companies can
change community focus by prioritizing, for instance, one type of
hardware over another. At the very least, providing a critical com-
ponent of infrastructure ensures that key pieces of future research
will be compatible with their existing system.

Finally, large technology companies accrue direct commercial
benefits from the release of open source tools. One may observe
that three of four of the largest funders of open source deep learn-
ing software (Facebook, Google, Microsoft, and Amazon) sell either
cloud computing, or else sell advertising as part of their core busi-
nesses. As cloud computing providers, these companies benefit from
increased demand for compute from others organizations seeking
to build their own ML models. For advertising, improvements in
large language models increases the value they can capture. In this
sense cloud computing and advertising services are tightly coupled
to deep learning capabilities. Deep learning can therefore be under-
stood as a complementary capability to the commercial services of
large technology companies.

5.1.2 Non Deep Learning Paradigms have Worse Support. One out-
come of concentrated support for deep learning tools is that other
paradigms for AI research (such as probabilistic machine learning
[27], rule based expert systems [10], and automated planning [15])
do not benefit from similar levels of technical development.

For example, the two most popular open source tools in deep
learning and in automated planning are, respectively, PyTorch and
FastDownward [20]. As a tool developed largely by the Facebook AI
Research term, PyTorch is incredibly well supported and well docu-
mented. By contrast FastDownward requires non-trivial installation
steps and basic knowledge of operating systems to handle down-
loading a compressed bundle of files andmanaging their installation
manually. The project supports Linux, macOS, and Windows, but
does not appear to have support for GPUs or more exotic operating
systems. Furthermore, it’s difficult to get immediate support if a
user runs into technical issues: In most of the bug queries we tried,
a straightforward search via a search engine did not yield answers,
and we had to turn to their custom forum.We do not mean to dispar-
age FastDownward, which appears to be a well maintained project
with clear documentation. Our point here is that it is very difficult
for a much smaller community and project to match the support
for one that is so much better resourced in terms of engineers.

5.1.3 MLOSS Can Shift Attention Orthogonally to Scientific Merit.
The quality of available tools affects how researchers choose the par-
adigm theywork in. Given the friction of using a tool like FastDown-
ward and the ease of experimenting with deep learning frameworks
and the documentation produced by its communities, researchers
are (all else equal) more likely to work on problems in deep learn-
ing. These may be tasks like investigating the outputs of large
language models, which involve large amounts of data, rather than,
for instance 2D scene navigation, where problem formulation and
algorithmic construction is more important [8].

While deep learning has clearly been remarkably successful
at a wide range of tasks, the literature on shortcomings of deep
learning is extensive [30, 31, 33, 35]. The main weaknesses are the
lack of interpretability and the massive amount of data needed to
make these systems work, which may not be realistic for many
important applications. By contrast, a paradigm like automated
planning may provide formal guarantees that are important for
high-stakes decisions such as flight autopilot software. Paradigms
such as probabilistic programming allow inference using much less
data [27]. Each paradigm has distinct affordances that lend them-
selves to different problems and different tooling. We agree with
Dotan and Milli that “progress” is value-laden and not objective. As
they point out, one big result of the 2012 Imagenet competition was
the mass adoption of benchmarks that favored data and compute-
rich environments [13]. Different tasks lend themselves to different
paradigms. If we want a plurality of needs to be addressed by AI, we
should be careful about deep learning capturing community atten-
tion and consider important problems that are underincentivized
within deep learning yet relevant to AI.

5.2 The Future of ML Tools
Community attention is shifting away from framework develop-
ment. Soumith Chintala, one of the creators of PyTorch, writes
“With PyTorch and TensorFlow, you’ve seen the frameworks sort
of converge... the next war is compilers for the frameworks. . . a lot
of innovation is waiting to happen” [24]. Similarly, we now briefly
turn our attention beyond frameworks to consider the next frontier
of ML tooling: data-centric tooling.

Data-centric tools are the technologies that assist with producing,
inspecting, managing, and service the data that is used to train ML
models. Data work is essential to ML projects – for most data-
intensive projects, a majority of the time is spent preparing the data
[22]. However, despite its central importance to model-building,
workingwith data is ad-hoc in practice. In industry, large companies
also seem to build their own data pipelines, but rather than a single
PhD establishing a custom pipeline for their experiment, companies
like Tesla will have dozens of ML engineers working on a highly
efficient patented pipeline [45] that their researchers can easily
build on. Although there are several startups attempting to solve
this problem, ranging from Snorkel AI to Octopai, there has yet to be
standardization or a consolidation on one particular tool. Especially
among researchers, there is far from a ‘PyTorch for data’. This has
led early deep learning researcher Andrew Ng to argue for ‘data-
centric AI’: “[h]old the code fixed and iteratively improve the data”
[34]. He argues that data has been heavily neglected (1% of research
on data improvement vs 99% of research on model improvement),
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and helped to start the 2021 NeurIPS Data-Centric AI workshop
[22].

Will future data tooling be open source? Currently, the compa-
nies with the largest presence in the data labeling space like Amazon
(Mechanical Turk) and Scale AI are proprietary platforms. However,
there are notable exceptions like Databricks, a $38B enterprise data
company that builds on top of the open source framework MLFlow.

We argue that whether data tools are open sourced will depend
in part on the incentives to produce those tools – which in turn
depends on the scale of the task. Systems that require petabytes of
data, such as Tesla’s self-driving car pipeline, are far less likely to be
open sourced than the gigabyte-sized experiments at a university
or small startup. Since academic researchers are unlikely to use
large-scale data tooling, open sourcing such a tool wouldn’t attract
talent nor grant prestige within academia in the same way that
open sourcing a framework could. Furthermore, the data pipeline
is often the source of competitive differentiation among large com-
panies that use AI, with much clearer direct commercial benefits
to keeping the technology closed source. One plausible scenario is
a bifurcation between large and small scale tools. The large scale
tools are provided by proprietary platforms like Scale whereas some
fraction of the small scale data tools are open source and freely
available to researchers.

6 CONCLUSION AND RECOMMENDATIONS
We have argued that MLOSS plays a large role in creating eco-
nomic value. Next, we developed a model of the effect of how open
sourcing machine learning tools shapes the ecosystem. Finally, we
explored incentives behindMLOSS and howMLOSSmay selectively
reinforce deep learning as a paradigm.

Trends in tooling point towards increasing concentration of ca-
pabilities and influence. We are heading towards a future where
fewer and fewer firms shape AI. This may allow for easier regu-
lation; governments have in the past successfully demonstrated
the ability to regulate monopolies emerging from general purpose
technologies like electricity. However, it may be much more con-
cerning that these capabilities are developing far more rapidly than
our wisdom of how to control our technologies. We conclude with
two recommendations.

First, we recommend further study of the effects ofmachine learn-
ing tools. How are the incentives similar or different for MLOSS vs
other OSS? Should we expect data tools and pretrained model tools
to develop similarly to frameworks (i.e., will they be open source?)
What are the trends in probabilistic programming tools? A better
understanding of the factors shaping AI will help us govern it.

Second, we recommend support of open source data tooling.
The paths for these tools are not set in stone, and funding at this
stage can have a large influence on the practice of AI in the near
future. The business incentives for MLOSS data-centric tooling are
different from the incentives for framework development. Insofar
as one believes that open source tools are important for research
quality or fairness among research subjects, as Jo and Gebru argue
[23], support for open source data tools could be a helpful lever
to create further value. This need not be through the creation of
an entirely new project, but rather support for less-developed data
capabilities. Furthermore, we believe that data tooling is not inclined

to misuse in a way that tools for pre-trained models may be, and
are thus a safer investment. Balancing a careful understanding of
AI with concerns of fairness and safety is crucial to wisely steer the
trajectory of our technology in the face of the daunting challenges
that behold us.

A ANALYSIS CODE AND MLOSS TOOL LIST
In the spirit of this paper, we’ve made our data and analysis code
open source. This includes our list of MLOSS tools. Interested read-
ers can find our work on Github at https://github.com/Yichabod/
OSML_value/.
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