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How Open Source Machine Learning Software Shapes AI

by
Max Langenkamp

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

If we want a future where AI serves a plurality of interests, then we should pay atten-
tion to the factors that drive its success. While others have studied the importance of
data, hardware, and models in directing the trajectory of AI, I argue that open source
software is a neglected factor shaping AI as a discipline. I start with the observa-
tion that almost all AI research and applications are built on machine learning open
source software (MLOSS). This thesis presents four contributions. First, it quantifies
the outsized impact of MLOSS by using Github contributions data. By contrasting
the costs of MLOSS and its economic benefits, I find that the average dollar of MLOSS
investment corresponds to at least $100 of global economic value created, correspond-
ing to $30B of economic value created this year. Second, I leverage interviews with
AI researchers and developers to develop a causal model of the effect of open sourcing
on economic value. I argue that open sourcing creates value through three primary
mechanisms: standardization of MLOSS tools, increased experimentation in AI re-
search, and creation of commuities. Third, I analyze the various incentives behind
MLOSS by examining three key factors: business strategy, sociotechnical factors, and
ideological motivations. In the last section, I explore how MLOSS may help us under-
stand the future of AI and make a number of probabilistic predictions. I intend this
thesis to be useful for technologists and academics who want to analyze and critique
AI, and policymakers who want to better understand and regulate AI systems.

Thesis Supervisor: Dylan Hadfield-Menell
Title: Assistant Professor of Artificial Intelligence and Decision Making
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The fig tree is pollinated only by the insect
Blastophaga grossorun. The larva of the insect lives
in the ovary of the fig tree, and there it gets its food.
The tree and the insect are thus heavily interdepen-
dent: the tree cannot reproduce without the insect;
the insect cannot eat without the tree; together they
constitute not only a viable but a productive and
thriving partnership. This cooperative "living to-
gether in intimate association, or even close union,
of two dissimilar organisms" is called symbiosis.
....
Man-computer symbiosis is probably not the ulti-
mate paradigm for complex technological systems.
It seems entirely possible that, in due course, elec-
tronic or chemical "machines" will outdo the hu-
man brain in most of the functions we now con-
sider exclusively within its province... There will
nevertheless be a fairly long interim during which
the main intellectual advances will be made by men
and computers working together in intimate asso-
ciation... [the years] may be 10 or 500, but those
years should be intellectually the most creative and
exciting in the history of mankind.
Man-Computer Symbiosis, JCR Licklider (1950)
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Chapter 1

Introduction

Interest in artificial intelligence (AI) has exploded over the past decade. Now, even
casual consumers interact daily with AI systems. This is often attributed to advances
in data, compute, and algorithms [18]. These factors are sometimes described as in-
puts to the so-called ‘AI production function’. In this thesis, I consider a neglected
factor: machine learning open source software (MLOSS). MLOSS is ubiquitous in
both research and production. However, it has received comparatively little attention
in the literature. I will examine how MLOSS shapes AI practice, examine its influ-
ences, and finally explore its implications on the near term future. I conclude that
MLOSS is a powerful point of intervention for shaping AI research and a phenomenon
that merits further examination.

My argument contains four parts:

1. MLOSS tools play an outsized role in the creation of economic value

2. MLOSS drives AI impact through standardization, experimentation, and com-
munity creation

3. A combination of business incentives, sociotechnical factors, and ideological
motivations shape MLOSS

4. MLOSS will continue to shape AI both by reinforcing deep learning and by
facilitating standardization of other AI capabilities

Overall, this thesis deepens understanding of how MLOSS impacts the AI ecosys-
tem. I offer four contributions, corresponding to the four parts of the argument.
First, I estimate the economic impact of MLOSS tools. I argue that the large cost-
benefit ratio suggests MLOSS is a useful point of intervention for policymakers. Sec-
ond, using qualitative interview data, I propose that MLOSS shapes AI development
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through standardization, experimentation, and community creation. Next I explore
the question ’what shapes MLOSS?’ through the lens of the business strategy that
accompanies its creation, the sociotechnical factors that shape the boundaries of what
tools can be created, and the ideological motivations associated with freely sharing
tools. Finally, I broadly examine the implications of my findings on the future of AI
research and development and present a list of predictions.

1.1 Background

To start my discussion, I introduce some key terms and background context that are
crucial for developing my argument in the following sections. In particular, I will
define machine learning open source software (MLOSS) and provide a brief overview
of MLOSS history.

1.2 Defining Machine Learning Open Source Soft-

ware (MLOSS)

Following prior work, I refer to AI as “the use of digital technology to create systems
capable of performing tasks commonly thought to require intelligence” and will fol-
low the common practice of using the terms ‘machine learning’ (ML) and ‘artificial
intelligence’ (AI) interchangeably[10, 22]. I refer to machine learning open source
software as computer software released under an open source license that is designed
specifically with machine learning use cases in mind. This includes software ranging
from frameworks (e.g. PyTorch and Pyro) to ‘all-in-one’ packages (e.g. scikit-learn)
to model development tools (e.g. TensorBoard). It does not include software such
as the interactive computing tool Jupyter Notebook which, although often used by
machine learning practitioners, was not specifically built to accommodate machine
learning.

1.3 A Brief History of MLOSS

I review the history of MLOSS to highlight that the phenomena is new, ubiquitous,
and increasingly supported by industry efforts.

In my perspective, the history of open source machine learning can be grouped
into three eras, punctuated by two critical events: the 2012 ImageNet competition
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and the release of TensorFlow in 2015.

• Phase 1: Grassroots Efforts (pre 2012). Prior to 2012, there were few large
and well maintained MLOSS projects [54]. Andrew Ng’s famous Introduction
to Deep Learning course was originally taught in MATLAB, a closed source
language. There were some more targeted ML frameworks such as OpenNN and
Torch (which later formed the foundation for PyTorch). However, the packages
were either very general or difficult to install and use, and lacked features such
as GPU support [55].

• Phase 2: The Rise of Frameworks (2012-2015). In 2012, a deep convolutional
neural network later known as AlexNet handily won the ImageNet competition,
attracting significant attention within academic and certain industry communi-
ties [40]. Subsequently, a wave of frameworks emerged from various academic re-
search labs, including Chainer, Theano and Caffe. Open source software played
an important role in the creation of these frameworks — for instance, the cre-
ators of Caffe directly cite the decision to open source AlexNet as inspiration for
their framework [60]. Simultaneously, there were a number of efforts within in-
dustry to develop private frameworks, such as Google’s DistBelief. Frameworks
for alternative approaches, such as Stan, appear and start to gain prominence.

• Phase 3: Industrialization of AI Research (2015-present). In 2015, Google’s de-
cision to open source TensorFlow changed the landscape in a number of ways.
First, by deploying over 200 engineers on the project, TensorFlow provided a
package that possessed a quality of engineering far above that of other frame-
works [56]. This led other companies to release competitor frameworks, such as
Amazon’s MXNet, Microsoft’s CNTK, and (later) Facebook’s PyTorch. In this
phase, we also witness the increasing prominence of frameworks for alternative
AI methods. Gen, a probabilistic programming package within the program-
ming language Julia, is released and begins to be used by researchers.

Now, open source technologies are ubiquitous in modern ML applications. Con-
sider a hypothetical document-processing company. In their stack, they may leverage
Detectron2 (an open source object detection model) programmed in PyTorch (an
open source framework) developed in Python (an open source language), originally
trained on COCO (an open source data set) and coded in a Jupyter notebook (an
open source development environment) [51, 43]. This is not the case in many other
technical fields, such as animation graphics or sound engineering.
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MLOSS is used in the vast majority of ML applications. Most organizations im-
plement machine learning methods through cloud providers like AWS Sagemaker or
GCP’s AI platform. Within those platforms, the predominant way of implementing
models is to build them via existing libraries such as Google’s TensorFlow or Face-
book/Meta’s PyTorch [14]. Open source software is even more central to AI research.
Paperswithcode, a community resource for practitioners to follow AI research, shows
that the vast majority of publicly available research code is written using open source
frameworks [58]. This matches data from interviews with AI researchers in both
academia and industry, where every single practitioner acknowledged the core role of
open source tools to their research process.

Before discussing related work, I’d like to add a caveat. While this thesis refers
to machine learning open source software, much of the focus (outside of the chapter
on MLOSS and economic value) is on deep learning open source software. This is the
case for a couple of reasons. First, deep learning tools — especially frameworks such
as PyTorch and TensorFlow — are the most popular MLOSS tools ever created. Ac-
cordingly, they have played an outsized role in shaping AI research. Second, although
the primary examples provided are from deep learning, I have striven to insure that
the effects of MLOSS discussed are not unique to deep learning. This is most true of
chapter four — on standardization, experimentation, and community creation.

1.4 Related Work

Studies on Open Source. Prior approaches have estimated the economic contribution
of open source provided some reassurance that a systematic assessment of value was
possible. Nadia Asparouhova’s book ‘Working in Public’ was a significant inspiration
early on.

Factors Shaping AI. Hitherto, much of the discussion of the factors that shape
AI has focused on the role of computation, with some consideration of the role of
algorithms and data. For instance, Dafoe (2018) suggests that “[p]lausibly the key
inputs to AI are computing power (compute), talent, data, insight, and money.”[18]
Hwang (2018) examines how the hardware supply chain shapes machine learning
development. Rosenfeld (2019) and Hestness (2017) examine the how dataset size
relates to model accuracy in AI. Both are part of a growing literature that aims to
more explicitly model the relationships between inputs and predictive error in AI. To
the best of our knowledge, however, there have been no detailed examinations of how
open source software shapes AI development.
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Critical Examination of AI. Many scholars have provided insightful examinations
about the trajectory and potential pitfalls of AI. The work of Dotan and Milli (2020)
[23] as well as that of Lake et al. (2017) [41] particularly helpful for situating deep
learning as a paradigm within AI more generally. The commentary in Jo et al. (2020)
[38] about the neglected role of data tooling in current AI research has been similarly
helpful.
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Chapter 2

MLOSS Tools Play an Outsized Role
in the Creation of Economic Value

Inspired by the observation that open source software is ubiquitous in AI applications,
this chapter will argue that MLOSS tools play an outsized role in the creation of global
economic value. Regardless of whether one cares about economic value for its own
sake, this suggests that MLOSS significantly shapes AI’s impact on society both now
and in the future, if not only because economic incentives heavily drive development.

First I’ll begin by estimating the cost of MLOSS tools based on Github activity.
Next, I’ll construct a cost-benefit estimate for AI using prior estimates of AI’s eco-
nomic value. I argue that the benefit-to-cost ratio of MLOSS tools is at least 100-to-1.
In other words, for every dollar invested in MLOSS tools, we should expect at least
$100 is created within the AI ecosystem. By this logic, we can conservatively estimate
that the global value created by MLOSS will be $30B, a contribution that we should
expect to continue to grow in absolute terms even if no new MLOSS packages are
produced.

2.1 The Cost of MLOSS Development

I begin with an estimate of the cost of annual development of the core MLOSS reposi-
tories. Whereas this exercise would be impossible for most closed-source technologies,
MLOSS development cost can be estimated from contribution data found on the pub-
lic repositories on Github.
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2.1.1 Data Collection

Defining a Comprehensive List of MLOSS Tools. I collected 146 actively maintained
MLOSS tools by drawing largely from the list of tools compiled by Chip Huyen, a
notable ML researcher and developer [35]. A small majority of the tools were from
large technology companies such as Facebook/Meta (PyTorch), and growing startups
such as HuggingFace (Transformers). It draws from sources ranging from the Linux
Foundation’s AI Tools, FirstMark’s Data and AI Landscape, and suggestions from the
AI community via Twitter. To validate the dataset, I asked a number of practitioners
in the community and examined other surveys. The practitioners asked suggested
two more tools that were missing, and the Kaggle survey of developers reflected my
intuition that the vast majority of developers use the same small number of tools [39].
For this reason, although this list should not be considered authoritative, I believe
that the tools not included will have only a negligible affect on the estimates.

Sampling Contribution Data from MLOSS Repositories. I scrape contribution data
from each repository’s Github contributions page, which pre-aggregates contributions
data at the Contributor-Period level, where the ‘period of interest’ is user-defined
(here the period was chosen to be two weeks). I then randomly select 5x two-week
periods from the history of each MLOSS repository. For each of those Periods, I record
the number of commits and lines modified (added or deleted) for each contributing
user in that period.

The result is 3,895 observations of Contributor-Period level data. For example,
during the October 16-30th 2017 period, Soumith Chintala (a PyTorch co-founder)
contributed 10 commits to the PyTorch repository corresponding to 10 commits and
338 lines modified. I also aggregate to the Repo-Period level, a total of 670 obser-
vations. Another example: during the March 16-30th 2018 period, the Scikit-Learn
repository had a total of 4 contributors adding 9 commits of 2134 lines modified.

Summarizing the Data. In Figure 1, I present histograms of the number of commits
and lines-modified at both the Contributor-Period (Left) and Repo-Period (Right)
level. The y-axis shows the number of commits (or lines modified), and the x-axis
shows the log-scaled count of observations corresponding to those values. For visu-
alization purposes, I collapse value observations above the 99% quantile to the 99%
quantile (aka winsorize at the 99% level).

These resulting distributions seem reasonable. The median Contributor-Period
corresponds to 2 commits of 100 lines of code modified. The median active repository
receives a commit about 15 times by 3 users in a given two-week period, corresponding
to 600 lines of code. However, I also observe the data is right-skewed. Therefore, while
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these distributions show that my results are not outlier-driven, there is some notable
degree of inequality in contributions across MLOSS repositories.

2.1.2 Cost Estimation

I now exploit the dataset to estimate the cost of these MLOSS repositories. Let a
“unit” be either a contributor, a commit, or a line modified. I first estimate cost-per-
unit, and then estimate the total number of units-per-year over the list of MLOSS
repositories. By multiplying these estimates, we can estimate the cost-per-year of
MLOSS development.

Cost-Per-Unit. I estimate this using a reference organization with known de-
veloper salaries such as PyTorch (Facebook) or TensorFlow (Google), taken from
levels.fyi, a salary information website [26, 27]. I assume an average wage of $300,000
a year, corresponding to the senior engineer level (e.g. L4 or E4). This is conser-
vative, as Google and Facebook likely pay more than other MLOSS organizations.
For Contributors, this salary is the cost-per-unit. For commits and lines modified, I
scale the average contributor-period-level data from the two-week period to the yearly
level, and use my known salaries to compute a cost-per-unit estimate, according to
the following equation:

$𝐶𝑜𝑠𝑡

𝑈𝑛𝑖𝑡
=

(︃
𝑈𝑠𝑒𝑟 · 𝑃𝑒𝑟𝑖𝑜𝑑𝐴𝑉 𝐺

(︃
#𝑈𝑛𝑖𝑡𝑠

𝑈𝑠𝑒𝑟 · 𝑃𝑒𝑟𝑖𝑜𝑑
× 26𝑃𝑒𝑟𝑖𝑜𝑑𝑠

𝑌 𝑒𝑎𝑟

)︃
× 𝑈𝑠𝑒𝑟 · 𝑌 𝑒𝑎𝑟

$𝑆𝑎𝑙𝑎𝑟𝑦

)︃−1

Units-Per-Year. I aggregate across the entire set of MLOSS repositories to esti-
mate the number of units per year. For Contributors, I assume that the number of
yearly-active contributors is the same as the average number of active contributors
in the periods that I observe. This reflects the logic that not all engineers who ever
contribute to an open source project are working on it full-time. Therefore, even
if the observed periods do not capture all contributors at an organization, I argue
that the average number of active contributors is representative of the organizations
investment in MLOSS in general. For commits and lines modify, I simply take the
average amount of units over the observed periods and scale that to the yearly level.
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Figure 2-1: Histogram Plots for Commits and Lines-Modified, at Contributor-Period
(Top) and Repository-Period (Bottom) levels.
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𝑈𝑛𝑖𝑡𝑠

𝑌 𝑒𝑎𝑟
=
∑︁
𝑅𝑒𝑝𝑜

[︃
𝑃𝑒𝑟𝑖𝑜𝑑𝐴𝑉 𝐺

(︃∑︁
𝑈𝑠𝑒𝑟

#𝑈𝑛𝑖𝑡𝑠

𝑈𝑠𝑒𝑟 · 𝑃𝑒𝑟𝑖𝑜𝑑

)︃]︃
× 𝑃𝑒𝑟𝑖𝑜𝑑

2𝑊𝑒𝑒𝑘𝑠
× 52 ·𝑊𝑒𝑒𝑘𝑠

𝑌 𝑒𝑎𝑟

Sensitivity Considerations. I estimate total system cost using three different units
(Contributors, Commits, and Lines Modified) to ensure that my estimates are not
driven by a weak assumption about how contribution practices from large projects
extrapolate to the rest of the project. Extrapolating via contributors assumes that
different contributors are doing similar work across repositories. By contrast, commits
and lines modified present alternative ways of weighting and extrapolating costs to
other repos, where I assume that different commits or lines modified are comparable
(even if Contributors are not comparable).

Table 2.1.2 presents the cost estimates for each unit. I find that the cost of MLOSS
ranges between $100-$300MM per year.

Unit Ref. Repo Cost/Unit Units/Year Cost/Year
Commits pytorch 2.43𝐾 121.83𝐾 295.47𝑀
Contributors pytorch 300.00𝐾 779.00 233.70𝑀
Lines tensorflow 34.09 5.44𝑀 185.56𝑀
Lines pytorch 34.08 5.44𝑀 185.53𝑀
Commits tensorflow 986.04 121.83𝐾 120.13𝑀

Table 2.1: Estimated Annual Cost of MLOSS Tools

2.1.3 Limitations to Cost Estimation

While I attempted to make the list as comprehensive as possible, it’s possible that
I am missing significant MLOSS projects that contribute significantly to economic
value creation and costs in ways that I am missing. Furthermore, given my limited
sampling, the estimates may also be high in variance. Despite these concerns, I still
believe these estimates capture the correct first-order approximation of costs. First,
as argued above, there is significant inequality in MLOSS usage, and the expert-
compiled list covers the most important tools with respect to usage. Second, the
estimates of this methodology can be easily extended via further sampling to miti-
gate concerns around sampling noise.
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2.2 The Benefits of AI and the role of MLOSS in

Economic Value Creation

I now contrast the estimated costs of MLOSS with the benefits of AI to global eco-
nomic value creation in order to argue that MLOSS plays an outsized role.

2.2.1 Economic Benefits of AI

Rather than developing our own estimate, I briefly summarize AI economic benefit
estimates from McKinsey and PWC. Each of these organizations estimates that AI
will add roughly $3-5 trillion USD to the global economy in 2022 [45, 49]. To arrive
at these estimates, these organizations break down the channels through which AI
creates and destroys value. AI creates global economic value because it lowers the
cost of existing processes and also drives product and service innovation. Further-
more, it does this across a broad range of industries, due to its broad applicability as
a general-purpose technology [31]. These organizations delve into various use-cases
for AI in order to micro-found their assumptions about value benefits. The results
in this thesis do not rely on the specific numbers in the reports, as the methodology
used is somewhat opaque. Instead, these estimates provide a rough order of magni-
tude estimate of the economic contribution of AI. One reassuring factor is that both
estimates are within an order of magnitude.

2.2.2 Attributing Economic Benefit to MLOSS

While it’s hard to estimate precisely how much value can be attributed to MLOSS,
one heuristic that has been proposed is the 70-20-10 rule, which argues that AI value
creation comes from investments in Processes, Data/Technologies, and Algorithms,
in those proportions [8]. For our purposes, I assume that MLOSS only contributes
to the algorithms portion of investment. I further assume that the algorithm value
is mostly attributable to MLOSS, based on the observation (described in Section 2)
that MLOSS tools are ubiquitous and are the primary means through which models
are distributed in practice.

Supposing that the consulting firms over-estimated the global value of AI by a
factor of 10, this still attributes 1% of value created to MLOSS tools, or roughly
$30B/year value created, corresponding to a benefit-cost ratio of over 100-to-1.
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2.2.3 Interpreting the Economic Costs and Benefits of MLOSS

This estimated annual value creation ($30B/year) and benefit-cost ratio (100:1) are
very large – few other classes of technology can match this level of productivity. By
comparison, the OECD estimates that open source software in Europe generates value
at a 4:1 ratio [24]. Furthermore, because MLOSS is a public good, as the usage of
AI scales globally, MLOSS will provide increasing returns to scale – which will only
serve to increase the benefit-cost ratio.

Nevertheless, I think these estimates are reasonable and are consistent with other
known estimates found in the literature. Even after these conservative estimates,
which provide an upper bound on cost and a lower bound on benefits, there is a 100:1
benefit-to-cost ratio. This is consistent with Greenstein and Nagle’s estimate of the
economic contributions of Apache as between $2B and $12B in 2012 [32].

Although the exact value attributable to MLOSS is unclear, this analysis suggests
that it plays a outsized role in global economic value creation. Given that MLOSS
tooling is ubiquitous and plays a major role in value creation, it is a fruitful arena
for fostering AI development. In order to do so, however, we need an understanding
of the mechanisms through which MLOSS shapes AI. I’ll explore this in the next
section.
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Chapter 3

MLOSS Drives AI Impact Through
Standardization, Experimentation,
and Community Creation

In this section, I develop a causal model of how MLOSS creates value and shapes the
AI research ecosystem.

Before discussing the methodology and findings, however, I want to preemptively
address a question: how is MLOSS different from more general open source software?

This question requires more attention than I can give it here. Moreover, this an
open area of research that ought to be investigated more. First, many of the effects
discussed below (standardization and community creation) apply equally to OSS.
However, machine learning has distinct affordances from software engineering more
generally. This shapes the effect of the software in ways that are underexplored and
difficult to immediately articulate. Here are a some preliminary thoughts:

1. Machine learning open source software is less mature than well-established open
source software.

The most studied open source software are projects like Debian and the Apache
web server. Not only are these packages over a decade older than today’s most popular
MLOSS tools, their use cases have been clearly established. Web servers and operating
systems were once an active area of research but their conceptual frameworks have
been long established and the scope of their tasks is clearly defined. Machine learning
is comparatively amorphous and actively being shaped by researchers.

2. Machine learning depends heavily on a wide range of capabilities.
As I will explore in Chapter 4, the current approach to machine learning depends

heavily on different resources. Compute and data are the most obvious resources.
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ID Institutional Experience Role AI Fields
R1 Big Tech PyTorch Dev Frameworks

Compilers
R2 Big Tech TensorFlow Dev Frameworks
R3 University PhD Researcher Audio

Startup (Cybersecurity)
R4 University PhD Researcher Robotics

Big Tech RL
R5 University PhD Researcher RL

Big Tech
Startup (BioTech)

R6 University PhD Researcher NLP
Big Tech
Startup (Translation)

R7 Venture Capital Investor Robotics
Startup (AV) AI Engineer AV

R8 Startup (BioTech) AI Engineer Biophysics

Table 3.1: Overview of Formal Interview Subjects’ Background. In selecting
the interview subjects, I focused on finding people with a variety of difference expe-
riences.

This means that in practice MLOSS subdivides into several submodules that each
solve a specific problem for ML. Also, the primacy of large matrices — typically in
the form of pretrained weights — require novel forms of software.

3.1 Methodology

3.1.1 Interviewees

I selected AI researchers and developers as subjects largely through convenience and
theoretical sampling [11]. During my selection of interview subjects, I focused on
ensuring that the interviews covered experiences from both industry and academia
over a variety of different ML projects. Overall, I conducted 23 interviews: 8 formal
interviews for an average of 50 minutes each, and 15 informal interviews with other
AI researchers. The background and experiences of the formal interview subjects is
listed in Table 3.1.1. In the next sections, to preserve the privacy of interviewees,
I will be referring to individuals with fabricated identifiers (e.g. ’R3’) as identified
below.
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3.1.2 Interview Structure

I followed a general interview structure:

• How did you first get introduced to machine learning?

• What have been your most recent machine learning projects?

• What institutional contexts did you work in, and what tools did you use?

• What are the main technologies that you depend on for your work? How do
they fit into your workflow?

• Have you ever used research code from another researcher’s project? Why?
What was the process for using it like?

• What was the last time you used a new model or technique? What was your
process for getting up to speed on it?

• Have you ever shared your own code / tools? Why? What was the process of
preparing it like?

Where possible, I asked interviewees to expand on points of interest. All interviews
had notes written within 24-hours of the interview. I promised confidentiality and
received permission to digitally record the formal interviews, allowing us to transcribe
them. In total, this produced 150 pages of interview transcripts and notes.

3.1.3 Archival Materials

To form a historical perspective, I examined a variety of sources. These included
materials ranging from the PyTorch five-year review to discussion on the EleutherAI
community Discord to materials from Stanford’s CS230 [50, 57, 21].

3.1.4 Data Analysis

I iterated between information collection and analysis to generate a theory grounded
in data [30]. I use two lenses of analysis:

1. Thematic analysis, where the categories are established using interview and
archival data;

2. Theoretical analysis, where I examine how open sourcing software leads to the
effect, and how the effect generates economic value.
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Figure 3-1: (1) I find that MLOSS produces economic value and shapes the AI ecosys-
tem through three primary effects: standardization, experimentation, and community
creation. (2) In Chapter 4, I will explore how these same factors reinforce the domi-
nant paradigm of deep learning.

Out of the many effects I encountered over the interviews, I identified three core
effects of open-sourcing projects: standardizing interfaces, enabling experimentation,
and creating communities.

3.2 Findings

I organize the findings into three distinct effects: Standardization, Experimentation,
and Community Creation (show in Figure 3-1).

3.2.1 Effect 1: Standardizing interfaces

One major effect I observed from the interviews and my own experience with open
source tools was standardization — the widespread adoption of a single technology
or technique among both users and tool-makers. Thematic Analysis. I observed
standardization at three major levels of analysis.

Programming language and frameworks. Frameworks like PyTorch and Tensor-
Flow provide the core primitives that are used by researchers and developers to con-
struct and train machine learning models. As described in section 2, after a period
of divergence in framework development, MLOSS frameworks have significantly con-
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solidated over the past five years.

Our interviewees’ experiences substantiate this general trend in framework con-
solidation; several interviewees started out by working in either older frameworks (R3
worked with Theano) or directly via array-based methods (R5), not a single one of
the subjects regularly works with a framework outside of PyTorch, TensorFlow, or
JAX today. R3 pointed out that, despite its early prevalence in the ML community,
nobody uses MATLAB any more. All researchers that I interviewed emphasized the
benefits of using the same framework in terms of their ability to replicate and build
on the community’s code, as well as sharing their ideas with other researchers.

Model Types. I noted that several of the interviewees converged on working
with large neural networks. Traditionally, these models would be hard for resource-
constrained researchers to leverage, but open source efforts have made many models
widely available. R6: “HuggingFace, for example,... made so many things a lot easier
and continues to for a lot of people in NLP who work on large models. I don’t really
know what I would do without HuggingFace. . . . there’s a sense that I’m missing a
big chunk of the field if I’m not working on big models at all.”

In order to come to consensus on large models, the research community also needs
open source datasets to establish benchmarks. For example, the ImageNet challenge
was enabled by the public ImageNet data set. This was essential for establishing the
importance of deep convolutional neural networks in 2012. In providing benchmarks,
public datasets have also facilitated the movement away from less well-suited models
such as Markov Chains.

User Experience. The interviews demonstrated convergence in user experience.

A particularly prominent example that emerged from the interviews was the con-
vergence of frameworks on eager execution over graph-based execution. Eager execu-
tion lets developers print values while running the model. In contrast, graph-based
approaches require users to insert placeholder variables in a computational graph.

Several interviewees noted that TensorFlow’s default graph execution was counter-
intuitive and made it harder to learn as a beginner, which led to them preferring
PyTorch. R6 notes: TensorFlow had such a weird model — you can’t print your graph
because there’s no values, it’s just the abstract graph. So I remember I struggled for
a long time in the early days. What I’ve observed is TensorFlow trying to add more
of that back into their framework to imitate PyTorch. So, now, you can do things
like eager execution.

At this point, there are few differences between the top frameworks. R5 notes “In
terms of the specific frameworks themselves... my personal opinion is that there’s not
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a huge difference between all of them – JAX, PyTorch, TensorFlow, etc.”
Beyond user interfaces, openness leads to greater integration between tools. R1

notes that the development of PyTorch XLA, which enables PyTorch (Facebook-based
software) compatibility with Tensor-Processing-Units (Google-based hardware), was
led by the Google research team [52].

Theoretical Analysis. One explanation for the relationship between open source and
standardization is the concept of technology certification, described in Lerner and
Tirole 2005 [42]. Open sourcing a technology is much easier than forming consensus
initially. However, because these technologies are free to use, high quality projects
gain large user bases and complementary products like documentation and integra-
tions with other technology emerge (a cross-side network effect). This attracts new
users, who are now able to share and collaborate with other users on the platform
(a direct network effect). By contrast, a closed-source technology presents a friction
that makes it difficult for all users to adopt and agree on initially, which prevents the
accruing of these network effects.

The core economic benefit of standardization is the creation of natural interop-
erability — where distinct technological systems are able to exchange services and
interact in a useful way. Interoperability improves economic outcomes by lowering
the costs necessary to train and transfer skills across domains, as well as adding value
through the ability for technologies to work with each other.

3.2.2 Effect 2: Enabling experimentation

Open source projects shaped the interviewees’ project preferences, helped them work
faster, and gave them new ways of thinking about problems.

Thematic Analysis. I organize the concept of experimentation into three sub-concepts:
project choice, development speed-up, and novel conceptualization.

Project Choice. The availability of open source code had a dramatic effect on the
projects that the interviewees worked on.

The availability of code was a primary motivation for some research projects.
From R4:

“If PyTorch or an equivalent didn’t exist, and I was looking at these pa-
pers that were, ‘hey here’s this neural network that can do this task and
we don’t know how it works, but we’re seeing great performance,’ I might
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just let that be. Whereas because those tools are there and I can just grab
the person’s implementation of this, I can very quickly start to probe it
to see if the network is actually learning things and test my explainabil-
ity methods with it. It’s just so much easier for me to work on those
types of problems, so they become more attractive.” R5 stated “My mas-
ter’s thesis was playing around with adversarial examples. . . looking at
neural-tangent-kernel-based models... If ‘neural-tangents’ (a key library)
disappeared, that would be very annoying. I literally don’t know how to
do neural tangent stuff without ‘neural-tangents’, and I would literally
have to go back into the papers. . . which would be pretty bad.”

When code was not available or did not work, it changed the scope of the project
or whether someone would pursue it. R4 said “I was trying to build a system where
the first step was to implement these old interactive RL Frameworks. I was having
some problems with that, so it definitely was going really slowly and was off putting
to me. So I ended up diverting the project. Instead of implementing those things
myself, I ended up doing more of a literature review.”

Beyond research, open source enables startups that work on AI problems with
limited resources to exist. R8 argues that if their startup “had to reimplement a
deep-learning framework from scratch, that would not be feasible, because we would
need to hire people who really understand compilers and CUDA and things like that.
If it was closed source, we would pay for it, maybe. . . but you definitely need to have
ML at a certain stage of maturity to allow [our startup] to do what we do.”

Faster Research and Development. Most obviously, open source projects speed up
development of new AI applications.

Most subjects felt that, although they conceptually understood open source frame-
works such as TensorFlow and PyTorch, these tools vitally lowered the friction and
increased the speed of specifying model architectures and training neural networks.
R4: “For me, the turnaround could be as short as eight weeks. [Because of existing
code] it’s very, very quick to get a prototype, and then you’re running your experi-
ments. The cycle is super rapid because of the availability of these tools.”

MLOSS infrastructure also enables startups to iterate quickly. R7 notes that
“these open source tools let you rapidly prototype and iterate, which is important in
the early stages of a company, when they’re figuring out what their product is”

Novel Conceptualization. The most subtle form of increased experimentation
comes from the way that open source projects change how AI developers concep-
tualize problems.
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One way this shows up is in how developers conceive of what new models and
applications can be built. R1 recalls a fellow researcher’s comment: “there’s no way
I would have thought of these ideas if it wasn’t for using PyTorch”. R3 also notes,
“In PyTorch you can have ‘if’ statements and all sorts of weird things that are not
normally part of neural networks, and it back-propagates through them easily. So you
have more freedom to experiment with novel ideas and structures because of that.”
Because of advances in Torch in particular, new kinds of network architectures such
as Tree-LSTMs are possible [62].

Theoretical Analysis. Open-sourcing a project enables experimentation because it
significantly lowers both the economic and knowledge barriers between project cre-
ators and consumers. Especially in the case of MLOSS, given available code, the
barriers to reproducing a paper are very low. For example, R3 notes that “if you
read a biology paper, there’s no way you’re going to, in an afternoon, reproduce
the results... But in machine learning, that’s pretty doable.” By lowering the barri-
ers to entry, open source encourages researchers to enter fields based on the quality
of their ideas rather than their prior knowledge-base or institutional circumstance.
This model is similar to the one presented in Murray et al. (2016), which finds that
openness enables researchers to join new fields quickly and opportunistically work on
relevant problems in the context of biology research[47].

Enabling experimentation creates economic value because it leads to the discovery
of a variety of machine learning models that enable AI to solve a broad range of
problems. This enables AI to solve a diverse breadth of use-cases across a variety of
problem domains. Furthermore, it allows for the most effective techniques of different
AI subfields to be transferred over rapidly to new subfields – for example the recent
transfer of Transformer architectures from NLP problems over to computer-vision
problems.

3.2.3 Effect 3: Community Creation

Perhaps the most under-discussed mechanism that interviewees referenced is the ef-
fect of open source on community creation. By community, I mean a space for both
technology contributors and users to interact – with common digital spaces today
being Github, Reddit, and Discord.

Thematic Analysis. Open-sourcing a project leads creators to be more in-touch with
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users, encourages users to contribute tools themselves, and inspires the creation of
related educational materials that make it easier for others to get involved.

Increased Feedback. Open sourcing projects enables greater feedback on the project,
which improves its design. Soumith Chintala, a co-creator of PyTorch, emphasized
the role of the openness of the community in helping to direct the prioritization of
PyTorch and making it a great user experience. “[Soumith] read the entire volume of
information that [his] community produced – github issues, forum posts, slack mes-
sages, twitter posts, reddit and hackernews comments. It was an incredibly useful
signal...” [13].

This effect extends beyond the focal project – R2 noted that, because of the
open-nature of the feedback, PyTorch had an advantage as “second mover”. PyTorch
learned from the mistakes of the previous TensorFlow framework.

For researchers, open-sourcing code enables their ideas to be more closely vali-
dated. R4 notes “If I make mistakes, I want somebody else to publish a paper saying,
‘hey, you got this wrong...’ I want this pursuit of truth and openness is the best way
to get there.”

Users Become Contributors. Open source machine learning software encourages
and makes possible broad involvement. From R4:

“If [research] required you to build your own system... we would see many
fewer people participating in this field.” R5 observes a cultural aspect
associated with open source projects not shared by closed source projects:
“Open source incentivizes people to play around with the frameworks. I
don’t see people say, ‘Here’s some cool thing I did in Matlab, come check
it out.’ But people will say ‘PyTorch is a cool framework, and here’s
something I made while messing around in PyTorch.’ And they’ll share
it in the blog post...”

Furthermore, MLOSS encourages unlikely participants to contribute to projects.
Consider the EleutherAI community, an open source community that grows and co-
ordinates primarily through their Discord Server. One undergrad who contributes to
the project writes

“One day during the pandemic summer of 2020, I found myself in this
strange dream-like place, a community of international Machine Learning
flaneurs who somehow became convinced that they could actually make
history. At first, I thought it would just be a fun place to discuss new
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AI developments. But I soon discovered that yeah, these people are seri-
ous about their ambitions, and more thrillingly they actually would like
to have me on board! As it turns out, the fact that Machine Learning
engineers despise JavaScript (while still needing it) become [sic] my entry
ticket to some of the coolest projects I ever worked on.”

Improved Educational Materials and Settings. Open source tools inspire the com-
munity to develop associated educational material to extend the reach of the user
base. All of the interviewees entered the field through openly available education
materials on AI – ranging from Nielsen’s online book on Neural Networks to Andrew
Ng’s CS231 course at Stanford. R3 notes that

“I studied [the Nielsen textbook] on my own time and got very interested
because I actually realized that this whole thing is not as complicated as
I thought it would be. I could actually run the example and eventually
started building some of my own things.”

Open source communities incentivize the creation of high-impact educational set-
tings. R2 comments

“we [Google] escalated from (just) teaching university students in the US
to going to these road shows, because we also obviously wanted to teach
people in all sorts of different emerging markets. TensorFlow is an inter-
national platform and is adopted by people everywhere, so. . . we teach
them colab, introducing them to colab, helping them connect to the TPU
or GPU accelerator so that they can run a model in their browser now
they don’t have to worry about actually installing it.”

Theoretical Analysis. The formation of open source communities has been studied
extensively in the literature, with prior explanations focusing on desires to reciprocate
in response to someone else’s effort, to have impact, or to gain a reputation in a way
that is useful [24]. I think all of these mechanisms are likely at play in the open
source machine-learning setting. However, I note one final mechanism for community
involvement – participating in these communities makes the products themselves
better, in a way that benefits the user.

Community creation creates economic value because it lowers the cost of us-
ing these tools and increases the number of available applications. By encouraging
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community members to become well-versed in the available tools and models, open-
sourcing also makes it easier for firms to find the necessary labor needed to implement
machine learning models that meet their organizational needs.

In summary, open sourcing creates economic value through three distinct interme-
diate mechanisms: standardization, experimentation, and community creation. These
concepts are represented in Figure 3-1. In the next section, I will explore the factors
that shape MLOSS itself.
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Chapter 4

What shapes MLOSS tools?

So far we’ve considered the value of MLOSS and a simple account of how it shapes the
ecosystem. Yet the reader might naturally be drawn to another question: what are
the factors that shape MLOSS? In this chapter, I address this question by focusing
on three most relevant types of factors: business incentives, sociotechnical forces, and
ideological motivations.

Before discussing the factors themselves, it’s helpful to distinguish between three
types of MLOSS producers. The first are large technology companies like Microsoft,
Amazon, and Google. They invest the most in providing MLOSS, and many of the
most popular open source tools are supported by them. The second are smaller tech-
nology companies (‘startups’) who tend to provide tools more targeted towards the
deployment of machine learning models. One prominent example in this category is
Hugging Face, the startup provides pretrained NLP models and associated infrastruc-
ture. The final producers are nonprofits and academia. Nonprofits like NumFOCUS
sponsored projects like Scikit-learn and NumPy, while academic groups such as the
MIT probabilistic computing group produce tools like the probabilistic framework
Gen.

These boundaries are often fuzzy in practice. The Linux Foundation, for instance,
is a nonprofit, but many of its projects like the Open Neural Network Exchange
were sponsored by several large technology companies. Similarly, smaller technology
companies may contribute to projects primarily housed at a large technology company.
Nevertheless, these distinctions are useful because in practice most work on a given
project comes from one of these three categories. The interested reader can examine
the associated collected open source dataset to evaluate this for themselves.

In the first section, I’ll address how business incentives motivate MLOSS for large
and smaller technology companies. In the next section, I’ll examine the sociotechni-
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cal factors shaping all MLOSS. In the third section, I’ll briefly explore the distinct
ideological motivations behind MLOSS.

4.1 Business incentives for MLOSS

In general, there are many different reasons a given company might fund developers
to work on an open source software project. It is particularly helpful to separate the
incentives facing the largest technology companies from those facing smaller startups.

I will discuss three effects that create incentives for large technology companies
(e.g. Facebook, Amazon, Google, Baidu) to produce MLOSS: standard shaping,
generating goodwill, and enhancing applications.

Prior to discussing each of these reasons, it’s worth noting that the barriers for big
technology companies to provide MLOSS are very low. Firstly, the current production
cost of even the most popular open source tools is insignificant in comparison to the
research and development budget at these companies. For instance, Facebook spent
$1.9 billion on research and development in 2017, whereas we estimate they spent no
more than $10 million, or 0.5% of their RD budget, supporting PyTorch. Furthermore,
this vastly overstates the cost of providing the software. Large companies that heavily
use machine learning tools like PyTorch need centralized code for building models,
whether or not they intend to release such code publicly. Providing public support
and documentation requires considerable time and effort, but is a fraction of the effort
that is required to build and maintain the tools in the first place.

Having considered the context, let’s examine the business incentives that motivate
investment in MLOSS.

4.1.1 Providing MLOSS leads to easier talent acquisition and

collaborations

Over the course of many conversations with dozens of ML practitioners, it was obvious
that open source tool providers are held in high regard in the community. Researchers
and practitioners, when prompted, are quick to express gratitude especially for the
well-engineered tools. This goodwill translates directly to prestige for the tool devel-
opers. One developer working on a popular framework told me that their primary
motivation for working in a large technology company was to work on their open
source framework.
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4.1.2 MLOSS enables standard setting, research adoption, and

other forms of indirect control over AI development

It may be initially puzzling to note that many of the companies that spend the
most providing MLOSS (Google, Amazon, Facebook) also aggressively patent their
research. Google, for instance, spends tens of millions of dollars a year maintaining
patents. Yet it seems counter-intuitive that a company that wants software to be
freely available also purchase expensive patents.

These strategies are in fact complementary. The patents prevent other compa-
nies from suing the patent holders and allow the patent holders a degree of control
over their use of the technology. Open-sourcing a project increases adoption rates,
increasing the likelihood that other developers will use tools from within the project
sponsor’s ecosystem.

Additionally, MLOSS lowers the friction for academic researchers to use the tools.
In a field where a large fraction of research is still within academic institutions, open
sourcing software reduces the friction between academia and industry. This means
that more talented academic researchers will go to work for industry research labs,
but also that the research labs are able to rapidly adopt (and spread) new machine
learning methods.

The power over standards that sponsoring an open source ML project gives is
subtle and should not be overstated. Norms within the open source community are
strong and highly critical of any attempt to restrict usage. Facebook, for instance,
notably failed to add a restrictive licensing stipulation to its popular package React
because of pressure from developers[53]. Similarly, the core decisions within most
open source frameworks come from developers themselves, rather than a mandate
stemming from the company’s business strategy. This can be seen by looking at the
history of decision making on the open source forums.

Nonetheless, it is clear that sponsoring a critical tool gives the sponsor significant
indirect power within the ecosystem. Decisions like which hardware to prioritize com-
patibility with, or which applications to provide support for, can favor the interest of
the project sponsor. At the very least, providing a critical component of infrastruc-
ture ensures that key pieces of future research will be compatible with their existing
system.
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4.1.3 Providing MLOSS enhances the value of existing capa-

bilities by incorporating community feedback

MLOSS increases the value of existing AI applications within companies. By solic-
iting improvements from tens of thousands of practitioners, TensorFlow became less
buggy, more usable and general. This in turn, could improve products that use Ten-
sorFlow like Dialogflow, Google’s platform for building chatbots, as well as services
like Youtube’s auto-transcribe and Google translate.

More abstractly, however, providing MLOSS increases the value of the sponsor’s
AI capabilities. If we conceive of the value of AI as a bundle of capabilities (e.g.
data, tooling, compute, algorithms), then commoditizing the tooling can increase the
value of the bundle by increasing demand for AI as a whole. Concretely, Amazon’s
compute platform becomes much more valuable when high quality frameworks lead
to twice the number of ML practitioners.

4.1.4 Startups provide MLOSS for community, talent, and

complementary services

Moving on from large technology companies, smaller technology companies and star-
tups appear to be motivated primarily by goodwill and increased demand for comple-
mentary services. Companies like the natural language processing company Hugging
Face, which provides the most popular package to import and use language models,
find it much easier to hire talented people because there is much goodwill and pres-
tige associated with the providers of heavily used MLOSS. Similarly, Hugging Face’s
free and popular language models have majorly increased demand for both their ML
infrastructure and consulting services. Similarly, Rasa, a startup providing an open
source AI chatbot, has a monetized platform for enterprise developers to customize
their chatbot. In most cases, MLOSS startups are seeking to grow their community,
hire talent, and sell complementary services rather than attempt to shape the future
of AI or strengthen ties with academia. Figure 4-1 provides a more specific breakdown
of incentives as they differ across organizations.

4.2 Sociotechnical forces shaping MLOSS

There are many forces that shape MLOSS that are by no means distinct to ML or
even OSS. Three general forces are helpful for understanding the evolution of MLOSS:
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Figure 4-1: A 2x2 of the business incentives for MLOSS

standardization, usability, research trends.

4.2.1 Some code wants to be standardized

Some programs lend themselves more easily to standard interfaces than others. This
simple fact has major bearing on what software becomes MLOSS. Consider the two
following tasks: matrix differentiation and dataset manipulation.

Matrix differentiation is a process that is notoriously tedious to implement yet
absolutely crucial for any artificial neural network to data. These two factors —
that it was time consuming to implement from scratch yet necessary for any work
with deep learning — meant it was one of the first procedures in MLOSS to become
standardized. Automatic differentiation was one of the first and largest contributions
of frameworks such as Theano, Torch, and TensorFlow.

Dataset manipulation, in contrast, is not very difficult and highly idiosyncratic.
Despite the fact that everyone has to do some data manipulation while training, there
is no standard tool for examining dataset quality across a variety of dataset types.

A priori, one should expect the programs most easy to standardize to be the first
to be open sourced.
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4.2.2 The most usable software tends to win

Another significant technological factor that shapes the growth of MLOSS is usability.
The usability of a tool effectively acts as a selection pressure, favoring the tools with
the most intuitive user interface. Notably, PyTorch’s imperative-style specification
of neural networks was eventually adopted by TensorFlow. This is despite the initial
lack of support for imperative approaches to production systems. The competition
between TensorFlow’s graph-based execution and PyTorch’s eager execution recalls
the famous Lisp vs C, or ‘the right thing’ vs ‘worse is better’[28]. Just as the simpler,
less complete, ‘worse’ C programming language prevailed in adoption over the more
complicated, complete, ‘right’ Lisp language, so too did PyTorch’s simpler approach
prevail over TensorFlow’s more efficient graph-based model.

4.2.3 Focus in MLOSS mirrors the attention of the community

MLOSS is also significantly shaped by the prevailing paradigm within machine learn-
ing. That the predominant model type for machine learning is currently deep learning
means that more MLOSS projects will naturally be created to address problems in
deep learning, rather than an alternate paradigm such as probabilistic programming
or automated planning.

Of course, the prevailing paradigm within machine learning is itself a product
of a large number of different factors. The state of hardware, the most prestigious
benchmarks, the commercial applicability, are all important in shaping the dominant
approach within machine learning. For a thoughtful consideration of this topic, I
point the reader to Dotan and Milli (2019)[23].

4.3 Ideological motivations shaping MLOSS

A final, critical, aspect of MLOSS development is the role of ideology. Most of the
key figures in MLOSS are motivated by particular visions of the world. These visions
may be religious in nature or the consequence of strongly held values. These values
tend to either be about helping improve the experience of other fellow developers, or
else furthering the state of AI.

The OSS researcher Nadia Asparouhova talks about the surprising presence of
religious belief in OSS [1]. SQLite, the most popular open source database engine
on the internet, famously has a Code of Ethics page that includes several biblically
inspired commandments[3]. Travis Oliphant, the creator of NumPy, one of the most

44



commonly used libraries in Python, tells the story of creating NumPy as an act
of public service against the wishes of his advisors and peers at Brigham Young
University[4].

Other developers believe in the pure good of furthering AI. In a podcast interview,
when asked for the reason Facebook sponsors PyTorch, Soumith Chintala explains
that “we have a single point agenda at [Facebook AI Research], which is to solve
AI” which involves empowering others to work on the problem [2]. The implication
seems to be that ‘solving AI’ would lead to enormous upside for society, whether by
allowing new drugs to be discovered or by proving new theorems. Similarly, H2O.ai
and Hugging Face both refer to ‘democratizing AI’ as a central motivation for open
sourcing their products.

4.4 Evaluating the theory

One question that may appear to the reader is "why did MLOSS seem to gain sig-
nificant popularity when it did?" Only four years prior, there had been a paper by
several machine learning researchers decrying the lack of open source code in machine
learning[54].

While there are many factors that can explain the rise of MLOSS, two sociotech-
nical forces provide the most helpful lens: technological capacity and attention.

The first sociotechnical factor I’d point to is technological capacity. In order for
deep learning open source software to have gained popularity, researchers needed both
hardware and standardized interfaces for deep learning. In the last couple of decades,
the commercial growth of video games led to the creation of GPUs, which researchers,
in turn, realized could be utilized to calculate model gradients. At the same time,
early attempts to build neural networks, such as Collobert’s Torch library [16] pro-
vided a standard interface for ML models. Thus, the building blocks of automatic
differentiation and templates for specifying neural network models existed. This was
a crucial resource for subsequent projects to draw from.

The second sociotechnical factor is the captured attention of the community. The
winning entry in the 2012 ImageNet competition ignited the imagination of academia
and industry alike. Academics like Yangqing Jia, creator of Caffe, were inspired by
Alex Krizhevsky’s open source cuda-convnet to build their own frameworks. At a
similar point, people like Google’s Jeff Dean realized that machine learning would
provide enormous commercial value in the near future. Google Brain was formed and
built an initially private neural network framework called Distbelief [20]. Distbelief
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eventually came to inform TensorFlow, which then sparked the ‘industrialization’ of
open source machine learning software.
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Chapter 5

Discussion: MLOSS and the Future
of AI

This final section discusses the implications of MLOSS on the near term trajectory
of AI. I will begin by examining MLOSS in the context of different machine learning
paradigms, then present a model of how MLOSS shapes deep learning production.
After arguing for the emergence of two trends — a shift away from frameworks and
the rising importance of data tools — I will briefly consider the risks on a 10 year
time horizon associated with emerging MLOSS and present a list of probabilistic
predictions.

5.1 MLOSS reinforces the deep learning paradigm

I’ll begin with a quick overview of different paradigms in AI, and then present two
examples of how current MLOSS tools reinforce deep learning. My aim in this section
is to illustrate how MLOSS tools may inadvertently contribute to an ‘AI research
monoculture’, whereby there are strong incentives for the majority of funders and AI
researchers to work within the domain of large neural networks.

5.1.1 On Different AI Paradigms

Beyond deep learning, other paradigms in AI research include probabilistic machine
learning [29], rule-based expert systems [19], and automated planning [25].

These different approaches are good for different tasks. For a concrete example,
consider the problem of verifying the code for flight software. The stakes of buggy
flight software are very high and require a large degree of certainty. In such domains,
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engineers opt to use theorem provers, which are closely linked to automated planning,
to formally verify that the software is free of bugs. This is a task that deep learning
algorithms are ill-suited for because they cannot provide formal guarantees.

If we want to build AI systems that augment, rather than compete with humans,
it is important to consider the tasks and interactions that other paradigms lend them-
selves to. It is not easy to assess the relative merits of each paradigm today, let alone
predict which will succeed. However, several of the researchers expressed a sense that
the ‘hype’ around deep learning is inducing a myopia and paradoxically degrading
the standards of scholarship, even as empirical results incrementally improve. Lip-
ton and Steinhardt (2018) point to something similar with their exploration on the
lack of explanation within much recent deep learning work [44]. I find it likely that
broadening focus from deep learning would engender a greater array of AI systems,
increasing the diversity of needs that a particular AI system can meet. I will discuss
the associated risks in the final section.

5.1.2 Better support for open source deep-learning tools rein-

forces deep learning

The two most popular open source tools in deep learning and in automated planning
are, respectively, PyTorch and FastDownward [33]. As a tool developed largely by the
Facebook AI Research term, PyTorch is incredibly well supported. Installation only
requires a single line of code in the terminal, and completes in a few minutes. PyTorch
runs on many types of hardware (with training on GPUs and CPUs) and operating
systems (including iOS and Android). A user can typically resolve technical issues
with a single search engine query, which parses tens of thousands of posts and active
users. There are dozens of helpful snippets of code detailing how to, for instance,
debug tensors with mismatched dimensions.

In contrast, consider FastDownward. Installation is non-trivial and requires basic
knowledge of operating systems to handle downloading a compressed bundle of files
and managing their installation manually. The project supports Linux, macOS, and
Windows, but does not appear to have support for GPUs or more exotic operating
systems. Furthermore, it’s difficult to get immediate support if a user runs into
technical issues: In most of the bug queries I tried, a straightforward search via a
search engine did not yield answers, and I had to turn to their custom forum. I do
not mean to disparage FastDownward, which appears to be a well maintained project
with clear documentation. My point here is that it is very difficult for a much smaller
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community and project to match the support for one that is so much better resourced
in terms of engineers.

The quality of available tools affects how researchers choose the paradigm they
work in. Given the friction of using a tool like FastDownward, which is harder to
install, find example code for, and debug, a researcher may be naturally inclined to
pursue deep learning tasks. Because of the ease of experimenting with deep learning
frameworks and the documentation produced by its communities, she is more likely to
work on problems in deep learning. These may be tasks like investigating the outputs
of large language models, which involve large amounts of data, rather than, for in-
stance 2D scene navigation, where problem formulation and algorithmic construction
is more important [17].

5.1.3 MLOSS tools, in driving industry adoption, have shifted

researchers’ economic incentives

Economic incentives may also predispose a prospective researcher towards deep learn-
ing – a downstream effect of the larger community associated with that paradigm.
Because deep learning tools are so easy to use, reliable, and supported by a large user
community, many companies can use deep learning. Companies have en masse begun
to apply deep learning via tools like TensorFlow, which has resulted in many more
jobs in industry for experts in deep learning than in other paradigms [6]. There is also
much higher demand in industry for jobs that involve deep learning. On Indeed.com,
there were over 15k jobs including the description ‘deep learning’. For ‘probabilis-
tic programming’ and ‘automated planning’, there were 40 and 8 jobs, respectively
[36, 37].

Having examined the role of MLOSS in favoring certain paradigms over others,
I’d like to examine how it shapes deep learning.

5.2 MLOSS and the deep-learning production func-

tion

In order to examine MLOSS’ effect on deep learning, it will help to contextualize the
role of MLOSS alongside the other factors in the ‘AI production function’. The pro-
duction function, as first introduced by Cobb and Douglas [15], conceives of abstract
variables, such as capital and raw materials, that parameterize an abstract function
mapping the respective inputs to outputs. Within the literature on AI governance,
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Dafoe introduced the notion of the ‘AI production function’[18], suggesting the “in-
puts of compute, talent, data, investment, time, and indicators such as prior progress
and achievements”. Dafoe’s discussion of ‘AI progress’, along with discussions found
in similar work, attempts to be agnostic to the particular paradigm of AI. In prac-
tice, this equates ‘deep learning’ and ‘AI’ — a move that limits the precision of the
conversation. In this section, I have instead opted to more explicitly refer to ‘deep
learning’.

While a production function can help to explicitly separate the factors that in-
fluence deep-learning development, it also has its limits. The production function
doesn’t account for the possibility of shared dependencies of the factors of produc-
tion, and hides crucial contextual information about each factor. To understand these
factors and their relationships, it is helpful to visualize an ordered dependency graph
of capabilities that address different user needs. This has the benefit of accounting
for shared capabilities within each factor (e.g. intermediate model representations
depend on both compute infrastructure and on the MLOSS framework) and also of
providing context in the relative maturity of each factor.

Figure 5-1 presents factors as capabilities required for a machine learning developer
to build a predictive model. This technique is known as Wardley mapping, a business
strategy tool invented by the researcher Simon Wardley in 2005[61].

The purpose of this figure is twofold. First, Wardley mapping is a helpful tool to
understand the factors that shape the development of deep learning, and subsequently,
AI. Second, the map conveys two emerging themes in deep-learning research and
development: the commodification of frameworks and the rising importance of data.

The map centers around the basic need of an ML developer — ‘building a machine-
learning model’ — and makes explicit the primary capabilities required. In this
case, the primary capabilities are compute, data, and frameworks. Each of these
capabilities have their own capabilities and are ordered on the y-axis based on how
many other capabilities a given capability depends on. Note that, for simplicity, I
have deliberately excluded the algorithms themselves as well as human capabilities.

The capabilities are then organized according to the their relative maturity. On
the x-axis, the less developed, newer capabilities are put on the left while the the more
standardized, well-defined capabilities are put on the right. As technologies develop,
their capabilities become better defined and move to the right.

In organizing capabilities in this way, two intuitions are made explicit: the com-
modification of deep learning frameworks and the rising importance of data tooling.
Let’s explore these in more detail.
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Figure 5-1: Wardley Map of Machine Learning

5.3 Attention shifts away from deep learning frame-

works

Competition among deep learning frameworks has been long and fierce. Before Py-
Torch and TensorFlow, there was Chainer, Theano, Torch, and Caffe (among others).
JAX, one of the most popular deep learning frameworks, has gained adoption among
researchers over TensorFlow very recently. Deepmind, for instance, announced at
the end of 2020 that it was adopting JAX as its primary framework [5]. Similarly,
Huawei released their own deep learning framework MindSpore in March of 2020 and
has gained significant adoption in China [46]. Given the continued activity within
the framework space, one might wonder if we should expect development effort to
continue to focus on deep learning.

I contend that competition among deep learning frameworks is largely over. Of
all the capabilities in a deep learning system, none have received as much attention
as the hardware for computation or the software for frameworks. In the early days of
TensorFlow, it was difficult to express certain architectures (e.g. Tree RNNs) using
the framework. Now, the practitioners I’ve talked to say that expressing models using
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frameworks is easy and no longer a bottleneck. Soumith Chintala, one of the creators
of PyTorch, provides a suggestive quote: “With PyTorch and TensorFlow, you’ve seen
the frameworks sort of converge... the next war is compilers for the frameworks —
XLA, TVM, PyTorch has Glow, a lot of innovation is waiting to happen.”

Chintala points to framework compilers as the next domain of competition, but
where else might we expect attention? One area that I expect to gain significant
traction is tooling for pretrained models. Many recent notable projects have iterated
on large pretrained models. Github’s Copilot , the large model designed to assist
with Python code-writing, was a finetuned version of GPT-3[12]. At the most basic
level, this would involve infrastructure for serving pretrained models. The current
large language models are too large to run on a single computer, and we already
see services like OpenAI’s GPT-3 API and Hugging Face’s serving infrastructure
meeting this need. Later tools could address allow for managing different model
versions, meta-frameworks for composing large distinct pretrained models, and tools
for incorporating different modalities (e.g. vision, sound, text) into pretrained models.

In addition to framework compilers and tools for pretrained models, data tooling
will become increasingly important. I expand on this in the following section.

5.4 Trends in data tooling

A natural consequence of the commodification of frameworks is that complementary
capabilities receive more attention. Among these capabilities, data tooling is the
perhaps the most underdeveloped. First, I’ll point out the lack of standardization for
data manipulation, especially in academic research. Next, I’ll explore some research
perspectives on the rising importance of data. Finally, I’ll consider whether we might
expect data tooling to be open sourced and what that implies about the medium-term
future.

Before discussing the specific trends within data tooling, let’s consider the different
types of data tools.

Data tool Function Example
Production Acquisition and creation of data MTurk, ScraPy
Inspection Examining and visualizing dataset Matplotlib
Curation/management Keeping track of data versions DVC
Database/serving Providing pipeline for deployed models Presto, mlflow

Table 5.1: Different types of data tooling.
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5.4.1 Despite its central importance to model-building, work-

ing with data is ad-hoc in practice

One gets drawn into machine learning for the excitement of model building, but finds
in reality that a huge amount of manual effort is required to prepare and verify the
data. For most data-intensive projects, a majority of the time is spent preparing
the data [37]. This is especially felt among academic ML researchers, who typically
create their own data pipelines. In industry, large companies also seem to build their
own data pipelines, but rather than a single PhD establishing a custom pipeline for
their experiment, companies like Tesla will have dozens of ML engineers working on
a highly efficient patented pipeline [59] that their researchers can easily build on.

Although there are several startups attempting to solve this problem, ranging from
Snorkel AI to Octopai, there has yet to be standardization or a consolidation on one
particular tool. Especially among researchers, there is far from a ‘PyTorch for data’.
While one might question whether in principle a single tool for manipulating data is
possible, it is clear that data production, inspection, and curation/management is a
major bottleneck within research and deployment of deep learning systems.

5.4.2 Researchers are paying more attention to data

The early deep learning researcher Andrew Ng, for instance, argues for ‘data-centric
AI’: “[h]old the code fixed and iteratively improve the data” [48]. He argues that
data has been heavily neglected (1% of research on data improvement vs 99% of
research on model improvement) and helped start the 2021 NeurIPS Data-Centric AI
workshop [37]. If Ng is correct, then tools for data inspection and high quality data
production will become especially important.

Moreover, the recent results with large language models such as Google’s PaLM,
LaMDA, or OpenAI’s GPT-3 [9] have been pointed to as the merit of naively adding
more data in addition to compute. However, this might be equally seen as pointing
to increased gains from larger amounts of data. While GPT-3 had ten times as
many parameters as GPT-2, it was also trained on over an order of magnitude more
data (570 GB compressed plaintext vs 40GB). Recent papers, such as Hoffman et al
(2022) [34] provide further evidence that existing models can benefit from significantly
increased training data.

If we expect models to continue to benefit from larger scaling, then we should also
expect the growing significance of data production tools.
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5.4.3 Will future data tooling be open source?

Right now it seems highly uncertain whether we would expect data tools to be open
source. The companies with the largest presence in the data labeling space like
Amazon (Mechanical Turk) and Scale AI are proprietary platforms. However, there
are notable exceptions like Databricks, a $38B enterprise data company that builds
on top of the open source framework MLFlow.

Whether data tools are open sourced depends in part on the scale of the task.
Systems that require petabytes of data, such as Tesla’s self-driving car pipeline, are
far less likely to be open sourced than the gigabyte-sized experiments at a university
or small startup. This can be best understood with the contexts of the business
incentives described in Chapter 5: since academic researchers are unlikely to use
large-scale data tooling, open sourcing such a tool wouldn’t attract talent nor tighten
the relationship with academia in the same way that open sourcing a framework
could. Furthermore, the data pipeline is often the source of competitive differentiation
among large companies that use AI. Nevertheless, as tools like H2O.AI indicate, we
may see businesses pursuing an ’open core’ model and offering accompanying services
or enterprise add-ons.

One plausible scenario is a bifurcation between large and small scale tools. The
large scale tools are provided by proprietary platforms like Scale whereas some fraction
of the small scale data tools are open source and freely available to researchers.

Insofar as one believes that open source tools are important for research quality or
fairness among research subjects, as Jo argues [38], providing support for open source
data tools could be a helpful lever to foster. This need not be through the creation of
an entirely new project, but rather support for existing open source projects in the do-
mains of less developed data capabilities (e.g. data inspection). However, if we worry
about the ability of organizations to misuse new capabilities (see, for instance, the
increasing surveillance-relevant applications of deep learning [7]), naive open sourcing
of data tools could strengthen misuse. Furthermore, although the practice of open
sourcing software can lead to reduced risk from public vulnerabilities in software, this
is far from a given. In many cases, without the right infrastructure for safe disclo-
sure and bug-patching, providing the code to ML platforms can enable adversaries to
abuse existing systems. Any effort to open source tooling should be done with caution
and careful attention to their dual-use capabilities and the accompanying information
security risks.

What do trends in data tooling imply for medium term risks from machine learn-
ing? It seems that the trends within data tooling, similar to the trends in compu-
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tation, point towards increasing concentration of capabilities into a small number of
firms. This may allow for easier regulation; governments have in the past successfully
demonstrated ability to regulate monopolies emerging from general purpose technolo-
gies like electricity. However, it may be much more concerning that these capabilities
are developing far more rapidly than our wisdom of how to control our technologies. I
have no antidote, but suggest that more granular examination of the factors shaping
deep learning production can provide the prerequisite knowledge we need to govern
this strange (relatively) new technology.

5.5 Predictions

In the spirit of building a helpful theory, I have attempted to make my findings
falsifiable by presenting a number of concrete predictions about the near term future.
Each claim is accompanied by a probability estimate.

1. PyTorch, and JAX will be two of top three frameworks for deep learning ac-
cording to Paperswithcode (outside of China) as of January 2027. 0.75

2. Python will be the most popular language for machine learning in 2027. 0.90

3. ONNX will become accepted as the dominant intermediate representation frame-
work 0.7

4. Between 2023-2027, none of the top publicly disclosed 5 largest language models
will be open sourced. 0.95

5. As of 2027, the three most popular platforms that provide data tooling are
largely proprietary/do not open source a crucial part of their stack. 0.7

5.6 Questions for further investigation

1. What properties are shared/different between MLOSS and OSS within other
domains (say compilers like LLVM)?

2. How do we expect the evolution of data tooling to be different from framework
tooling?

3. How different are the capabilities required for scaling up probabilistic program-
ming versus deep learning (specifically compute)?
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4. How does MLOSS in China differ from those in the U.S? What does this imply
about the diffusion of knowledge about AI research?

5. How are the incentives for open sourcing data tools different than the incentives
for other MLOSS (especially frameworks)?
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